您的当前位置:首页正文

高一数学知识点总结

2023-10-24 来源:榕意旅游网
高一数学知识总结

必修一 一、集合

一、集合有关概念 1. 集合的含义

2. 集合的中元素的三个特性:

(1)元素的确定性如:世界上最高的山 (2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y} (3)元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集

3.集合的表示:{ … } 如:{我校的篮球队员},{太平洋,

大西洋,印度洋,北冰洋}

(1)用拉丁字母表示集合:A={我校的篮球队

员},B={1,2,3,4,5}

(2)集合的表示方法:列举法与描述法。  注意:常用数集及其记法:

非负整数集(即自然数集) 记作:N

正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R

1)列举法:{a,b,c……}

2)描述法:将集合中的元素的公共属性描述出来,写在大

括号内表示集合的方法。{xR| x-3>2} ,{x| x-3>2} 3)语言描述法:例:{不是直角三角形的三角形} 4)Venn图:

4、集合的分类:

(1)有限集 含有有限个元素的集合 (2)无限集 含有无限个元素的集合

(3)空集 不含任何元素的集合 例:{x|x2=-5}

二、集合间的基本关系 1.“包含”关系—子集

注意:AB有两种可能(1)A是B的一部分,;(2)A与

B是同一集合。

反之: 集合A不包含于集合B,或集合B不包含集合A,记作

B或BA A2.“相等”关系:A=B (5≥5,且5≤5,则5=5)

实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”

即:① 任何一个集合是它本身的子集。AA

②真子集:如果AB,且A B那就说集合A是集合B的真子集,记作AB(或BA)

③如果 AB, BC ,那么 AC ④ 如果AB 同时 BA 那么A=B

3. 不含任何元素的集合叫做空集,记为Φ

规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。

 有n个元素的集合,含有2n个子集,2n-1个真子集

二、函数

1、函数定义域、值域求法综合

2.、函数奇偶性与单调性问题的解题策略 3、恒成立问题的求解策略 4、反函数的几种题型及方法

5、二次函数根的问题——一题多解 &指数函数y=a^x

a^a*a^b=a^a+b(a>0,a、b属于Q) (a^a)^b=a^ab(a>0,a、b属于Q) (ab)^a=a^a*b^a(a>0,a、b属于Q) 指数函数对称规律:

1、函数y=a^x与y=a^-x关于y轴对称 2、函数y=a^x与y=-a^x关于x轴对称

3、函数y=a^x与y=-a^-x关于坐标原点对称 &对数函数y=loga^x

如果a0,且a1,M0,N0,那么: 1 loga(M〃N)logaM+logaN; ○

M2 logalogaM-logaN; ○

N3 logaMnnlogaM (nR). ○

注意:换底公式

logcbc0,b0) (a0,且a1;且c1;. logablogca幂函数y=x^a(a属于R)

1、幂函数定义:一般地,形如yx(aR)的函数称为幂函数,其中为常数. 2、幂函数性质归纳.

(1)所有的幂函数在(0,+≦)都有定义并且图象都过点(1,1);

(2)0时,幂函数的图象通过原点,并且在区间[0,)上是增函数.特别地,当1时,幂函数的图象下凸;当01时,幂函数的图象上凸; (3)0时,幂函数的图象在区间(0,)上是减函数.在第一象限内,当x从右边趋向原点时,图象在y轴右方无限地逼近y轴正半轴,当x趋于时,图象在x轴上方无限地逼近x轴正半轴.

方程的根与函数的零点

1、函数零点的概念:对于函数yf(x)(xD),把使f(x)0成立的实数x叫做函数yf(x)(xD)的零点。 2、函数零点的意义:函数yf(x)的零点就是方程f(x)0实数根,亦即函数yf(x)的图象与x轴交点的横坐标。 即:方程f(x)0有实数根函数yf(x)的图象与x轴有交点函数yf(x)有零点. 3、函数零点的求法:

1 (代数法)求方程f(x)0的实数根; ○

2 (几何法)对于不能用求根公式的方程,可以将它与函○

数yf(x)的图象联系起来,并利用函数的性质找出零点. 4、二次函数的零点:

二次函数yax2bxc(a0).

(1)△>0,方程ax2bxc0有两不等实根,二次函数的图象与x轴有两个交点,二次函数有两个零点.

(2)△=0,方程ax2bxc0有两相等实根,二次函数的图象与x轴有一个交点,二次函数有一个二重零点或二阶零点.

(3)△<0,方程ax2bxc0无实根,二次函数的图象与x轴无交点,二次函数无零点. 三、平面向量

向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量.

有向线段的三要素:起点、方向、长度. 零向量:长度为0的向量.

单位向量:长度等于1个单位的向量. 相等向量:长度相等且方向相同的向量 &向量的运算 加法运算

AB+BC=AC,这种计算法则叫做向量加法的三角形法则。 已知两个从同一点O出发的两个向量OA、OB,以OA、OB为邻边作平行四边形OACB,则以O为起点的对角线OC就是向量OA、OB的和,这种计算法则叫做向量加法的平行四边形法则。

对于零向量和任意向量a,有:0+a=a+0=a。 |a+b|≤|a|+|b|。

向量的加法满足所有的加法运算定律。

减法运算

与a长度相等,方向相反的向量,叫做a的相反向量,-(-a)=a,零向量的相反向量仍然是零向量。

(1)a+(-a)=(-a)+a=0(2)a-b=a+(-b)。

数乘运算

实数λ与向量a的积是一个向量,这种运算叫做向量的数乘,记作λa,|λa|=|λ||a|,当λ > 0时,λa的方向和a的方向相同,当λ < 0时,λa的方向和a的方向相反,当λ = 0时,λa = 0。 设λ、μ是实数,那么:(1)(λμ)a = λ(μa)(2)(λ μ)a = λa μa(3)λ(a ± b) = λa ± λb(4)(-λ)a =-(λa) = λ(-a)。

向量的加法运算、减法运算、数乘运算统称线性运算。

向量的数量积

已知两个非零向量a、b,那么|a||b|cos θ叫做a与b的数量积或内积,记作a?b,θ是a与b的夹角,|a|cos θ(|b|cos θ)叫做向量a在b方向上(b在a方向上)的投影。零向量与任意向量的数量积为0。 a?b的几何意义:数量积a?b等于a的长度|a|与b在a的方向上的投影|b|cos θ的乘积。

两个向量的数量积等于它们对应坐标的乘积的和。 四、三角函数

1、善于用“1“巧解题

2、三角问题的非三角化解题策略 3、三角函数有界性求最值解题方法 4、三角函数向量综合题例析 5、三角函数中的数学思想方法

15、正弦函数、余弦函数和正切函数的图象与性质: 函 ycosx ytanx 数 ysinx 性

图象

定义域 值域 最值

R

R

xxk,k

2R

1,1

当x2k时,ymax1,1

k当x2kk时,

既无最大值也无最小

1;当ymax1;当x2k

2x2k2

k时,ymin1.

2

k时,ymin1.

周期性 奇偶性

2

奇函数 偶函数 奇函数

在2k,2k

22在

2k,2kk单k上是增函数;在 上是增函数;在在k,k

22调

2k,2k 3性  2k,2kk上是增函数. 22k上是减函数.

k上是减函数.

心对

对k,0k

k,0k k,0k 称2对称轴2性

对称轴xkk xkk 无对称轴

2

必修四

角的顶点与原点重合,角的始边与x轴的非负半轴重合,终边落在第几象限,则称为第几象限角.

第二象限角的集合为k36090k360180,k

第三象限角的集合为k360180k360270,k 第四象限角的集合为k360270k360360,k 终边在x轴上的角的集合为k180,k

终边在y轴上的角的集合为k18090,k 终边在坐标轴上的角的集合为k90,k

第一象限角的集合为k360k36090,k

3、与角终边相同的角的集合为k360,k 4、已知是第几象限角,确定

n所在象限的方法:先把各象限均分n等n*份,再从x轴的正半轴的上方起,依次将各区域标上一、二、三、四,则原来是第几象限对应的标号即为终边所落在的区域.

n5、长度等于半径长的弧所对的圆心角叫做1弧度. 口诀:奇变偶不变,符号看象限.

公式一:

设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα cos(2kπ+α)=cosα tan(2kπ+α)=tanα cot(2kπ+α)=cotα 公式二:

设α为任意角,π α的三角函数值与α的三角函数值之间的关系: sin(π+α)=-sinα cos(π+α)=-cosα tan(π+α)=tanα cot(π+α)=cotα

公式三:

任意角α与 -α的三角函数值之间的关系: sin(-α)=-sinα cos(-α)=cosα tan(-α)=-tanα cot(-α)=-cotα

公式四:

利用公式二和公式三可以得到π-α与α的三角函数值之间的关系: sin(π-α)=sinα cos(π-α)=-cosα tan(π-α)=-tanα cot(π-α)=-cotα

公式五:

利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系: sin(2π-α)=-sinα cos(2π-α)=cosα tan(2π-α)=-tanα cot(2π-α)=-cotα

公式六:

π/2±α及3π/2±α与α的三角函数值之间的关系: sin(π/2+α)=cosα cos(π/2+α)=-sinα tan(π/2+α)=-cotα cot(π/2+α)=-tanα

sin(π/2-α)=cosα cos(π/2-α)=sinα tan(π/2-α)=cotα cot(π/2-α)=tanα

sin(3π/2+α)=-cosα cos(3π/2+α)=sinα tan(3π/2+α)=-cotα cot(3π/2+α)=-tanα

sin(3π/2-α)=-cosα cos(3π/2-α)=-sinα tan(3π/2-α)=cotα cot(3π/2-α)=tanα

(以上k∈Z)

其他三角函数知识: 同角三角函数基本关系

⒈同角三角函数的基本关系式 倒数关系:

tanα •cotα=1 sinα •cscα=1 cosα •secα=1 商的关系:

sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα 平方关系:

sin^2(α)+cos^2(α)=1 1+tan^2(α)=sec^2(α) 1+cot^2(α)=csc^2(α)

两角和差公式

⒉两角和与差的三角函数公式

sin(α+β)=sinαcosβ+cosαsinβ sin(α-β)=sinαcosβ-cosαsinβ cos(α+β)=cosαcosβ-sinαsinβ cos(α-β)=cosαcosβ+sinαsinβ

tanα+tanβ

tan(α+β)=—————— 1-tanα •tanβ

tanα-tanβ

tan(α-β)=—————— 1+tanα •tanβ

倍角公式

⒊二倍角的正弦、余弦和正切公式(升幂缩角公式) sin2α=2sinαcosα

cos2α=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)

2tanα

tan2α=————— 1-tan^2(α)

半角公式

⒋半角的正弦、余弦和正切公式(降幂扩角公式)

1-cosα

sin^2(α/2)=————— 2

1+cosα

cos^2(α/2)=————— 2

1-cosα

tan^2(α/2)=————— 1+cosα

万能公式

⒌万能公式 2tan(α/2)

sinα=—————— 1+tan^2(α/2)

1-tan^2(α/2)

cosα=—————— 1+tan^2(α/2)

2tan(α/2)

tanα=—————— 1-tan^2(α/2)

和差化积公式

⒎三角函数的和差化积公式

α+β α-β

sinα+sinβ=2sin—----•cos—--- 2 2

α+β α-β

sinα-sinβ=2cos—----•sin—---- 2 2

α+β α-β

cosα+cosβ=2cos—-----•cos—----- 2 2

α+β α-β

cosα-cosβ=-2sin—-----•sin—----- 2 2

积化和差公式

⒏三角函数的积化和差公式

sinα •cosβ=0.5[sin(α+β)+sin(α-β)] cosα •sinβ=0.5[sin(α+β)-sin(α-β)] cosα •cosβ=0.5[cos(α+β)+cos(α-β)] sinα •sinβ=- 0.5[cos(α+β)-cos(α-β)]

因篇幅问题不能全部显示,请点此查看更多更全内容