硕士学位论文 全桥LLC谐振变换器研究 RESEARCH ON FULL-BRIDGE LLC RESONANT CONVERTER 黄贺 哈尔滨工业大学 2012年7月 国内图书分类号:TM461.5 学校代码:10213 国际图书分类号:621.3 密级:公开 工学硕士学位论文 全桥LLC谐振变换器研究 硕士研究生:黄贺 导 师:贲洪奇 教授 申请学位:工学硕士 学科:电气工程 所 在 单 位:电气工程系 答 辩 日 期:2012年7月 授予学位单位:哈尔滨工业大学 Classified Index: TM461.5 U.D.C: 621.3 Dissertation for the Master Degree in Engineering RESEARCH ON FULL-BRIDGE LLC RESONANT CONVERTER Candidate: Supervisor: Academic Degree Applied for:Speciality: Affiliation: Date of Defence: Huang HeProf. Ben HongqiMaster of Engineering Electrical Engineering Department of Electrical Engineering July, 2012 Degree-Conferring-Institution:Harbin Institute of Technology 哈尔滨工业大学工学硕士学位论文 摘 要 在大功率二次电源中,LLC全桥变换器由于具备低应力,高效率,低电磁辐射等诸多技术优势,成为了研究热点。但LLC变换器的工作特性、可靠性对负载条件及工作频率所在区间较为敏感,在输入电压较低,负载由空载向满载切换的过程中,若谐振腔参数设计不合理,变换器易出现容性开关现象,烧毁变换器。 为提高全桥LLC变换器的可靠性,本文在对LLC变换器的基本工作原理进行详细分析后,根据不同频率下的工作特性,将LLC变换器的工作频率区间划分为三部分,而后分别对不同工作区间内变换器稳态工作过程中的各个阶段进行详细描述。根据变换器结构特点进行简化分析后,得到全桥LLC变换器的等效原理电路,对该等效电路建立基波近似(FHA)建模,依据此模型,在推导出变换器的变压特性公式并做出曲线图后,详细的讨论了谐振腔参数对变换器变压特性的影响。对变换器在容性工作区域内的各个稳态工作阶段进行详细讨论后,找出了变换器的安全工作条件,进而推导出了谐振腔参数与该条件的关系式。在对变换器效率问题进行讨论时,分别对开关管损耗以及整流二极管损耗记性了详细的理论推导,得出了开关管损耗关于励磁电感量等参数的表达式,找到了谐振参数与变换器效率的联系。为找出LLC变换器在负载突变过程中出现暂态容性开通的具体工作机理,本文对变换器由轻载向重载切换时的工作过程进行了详细讨论,而后得出变换器输出端等效电路,对其进行暂态分析并推导出等效输出负载值的计算公式。以该公式作为参考,综合变换器软开关实现的条件、谐振腔参数与变换器工作特性的关系等因素,找出一套全桥LLC谐振变换器谐振腔参数的设计方法,达到提高变换器可靠性同时兼顾效率的目的。 根据本文所述的设计方法,设计一台输出为48V/15A的LLC全桥变换器,使用saber对变换器参数进行仿真并制作了一台实验样机对理论进行了验证,最终,实验结果证明了论文所提设计方法的可行性。 关键词:LLC;全桥;软开关;可靠性;效率 - I -哈尔滨工业大学工学硕士学位论文 Abstract Having the advantages of the low stress, high efficiency and low electromagnetic radiation in high power DC/DC converter applying, full-bridge LLC resonant converter has became a research hotspot. But the operating characteristics and reliability of the LLC converter is very sensitive to the load condition and the operating frequency. Especially in low input voltage circumstances,when load condition is changed from idle to full-load, the operating frequency decreases rapidly, if the parameters of resonant cavity are not designed properly, the converter will run in capacitive mode and burn down in the end. In order to improve the reliability, the basic working principle of the full-bridge LLC converter is analysed firstly, according to the intervals that the working frequency of the converter lies in, the work phases of converter are described in detail respectively. After simplifying the converter structure, the principle circuit is obtained and a FHA model is constructed, with that model, a gain formula is derived and a set of curves are drawn, then the influence of the cavity’s parameter on gain features of the converter are analysed in details. After discussing all the working stage of the converter in capacitive mode, the safe working requirment of the LLC converter is found, then the relationship between that requirment and the parameters of the resonant cavity is gained. In discussing the efficiency of the converter, the loss of the swith and the rectifer diode is analysed in detail, then the switch loss formula with respect to magnetizing inductnce is obtained, finding out the relationship between the parameters of the resonant cavity and the efficiency of the converter. Then, by discussing the processing that the load conditon is changed from idle to full-load, the output equivalent circuit of the converter is achived, by applying transient analysis on that circuit , the formula for calculating the equivalent output load value is derived. Taking the formula as a design consideration and combining the factors of requirement for soft-switching implementation and the relationship between parameters of the resonant cavity and operating characteristics of the converter,a set of design methods for full-bridge LLC resonant converter resonator parameters is found to improve the reliablity of converter whose efficiency is also taken into account. According to the design method presented in this article, a 48V/15A LLC full bridge converter is designed, by using the saber to simulate and producing an experimental prototype,finally,theory is verfied. Keywords: LLC, Full-bridge, Soft-switching, realibility,efficiency - II -哈尔滨工业大学工学硕士学位论文 目 录 摘 要...................................................................................................................... I ABSTRACT ........................................................................................................... II 第1章 绪 论 ....................................................................................................... 1 1.1 课题背景与研究的目的和意义 ............................................................... 1 1.2 软开关技术发展概况介绍 ...................................................................... 2 1.2.1零电压移相全桥变换技术...................................................................... 2 1.2.2零电流移相全桥变换技术...................................................................... 3 1.2.3有源箝位技术 ......................................................................................... 3 1.2.4零电压零电流移相全桥变换技术 .......................................................... 4 1.2.5 LLC谐振变换技术................................................................................. 5 1.3 本文的主要内容.....................................................................................6 第2章 变换器稳态能量传输过程分析................................................................. 7 2.1 引言.......................................................................................................7 2.2 变换器主电路拓扑结构.......................................................................... 7 2.3 LLC全桥变换器基本原理 ...................................................................... 8 2.4 LLC全桥变换器稳态能量传输过程........................................................ 9 2.4.1 fsf1时变换器能量传输过程 .............................................................. 9 2.4.2 f2fsf1时变换器能量传输过程 ..................................................... 13 2.4.3 fsf1时变换器能量传输过程 ............................................................ 16 2.5 副端二极管零电流开关实现.................................................................17 2.6 本章小结 ............................................................................................. 17 第3章 LLC谐振腔参数与工作特性关系 .......................................................... 18 3.1 引言.....................................................................................................18 3.2 LLC全桥变换器基波近似模型 ............................................................. 18 3.3 LLC全桥变换器增益与负载适应特性关系 ........................................... 20 3.4 LLC全桥变换器安全工作条件 ............................................................. 23 3.5 LLC全桥变换器效率特性与谐振腔参数关系 ....................................... 28 3.6 本章小结 ............................................................................................. 32 第4章 变换器参数设计方法讨论 ...................................................................... 33 4.1 引言.....................................................................................................33 - III -哈尔滨工业大学工学硕士学位论文 4.2 暂态容性开关问题 ............................................................................... 33 4.3 零电压开通实现条件 ........................................................................... 36 4.4 变换器谐振腔参数设计方法.................................................................39 4.4.1变换器额定工作点选择........................................................................ 39 4.4.2确定参数m ........................................................................................... 41 4.4.3确定励磁电感量Lm .............................................................................. 41 4.4.4设计参数校验 ....................................................................................... 42 4.5 本章小结 ............................................................................................. 42 第5章 硬件电路设计及实验结果 ...................................................................... 44 5.1 引言.....................................................................................................44 5.2变换器电路参数计算............................................................................ 44 5.2.1 主电路参数选取 .................................................................................. 44 5.2.2 控制电路方案选择 .............................................................................. 46 5.2.3 变换器启动过程及启动电路参数计算 ............................................... 49 5.3仿真结果.............................................................................................. 51 5.4实验结果.............................................................................................. 53 5.5本章小结.............................................................................................. 56 结 论................................................................................................................... 57 参考文献 ............................................................................................................... 58 攻读硕士学位期间发表的论文及其它成果 ......................................................... 62 哈尔滨工业大学学位论文原创性声明及使用授权说明......................................63 致 谢................................................................................................................... 64 - IV -哈尔滨工业大学工学硕士学位论文 第1章 绪 论 1.1 课题背景与研究的目的和意义 作为最清洁的二次能源,电能为人民的生活及社会经济发展提供最基本的生活及生产资料,国际上已将电能的一次能源转转换率及占终端能源消费的比重作为重要标准来衡量一个国家经济、科技、文化的发展水平。目前,我国电能的一次能源转换率已接近45%,与发达国家水平接近,但我国的电能利用效率却仍落后发达国家20年,低下的电能利用率最终导致我国严重的“电荒现象”,提高电能利用率已是迫在眉睫。 据不完全统计,超过40%的电能是通过二次转换后才接入用电设备中的,而在电能转换过程中,效率每提高1%,那么全国每年就能节省25亿千瓦的电能。传统的线性变换方式使用功率三极管进行电能变换,通过调整三极两端电压对输出电压进行稳定,在工作过程中虽然EMI较小,但三极管一直处于放大状态,电路损耗较大;受工频隔离变压器的影响,该类型的变换器体积很大。随着用电设备不断向小型化,智能化方向发展,作为向这些设备供电的电能变换器,面临着效率、性能等方面技术标准不断提高的处境。线性电能变换器方式由于上述固有技术缺点,正被逐步被淘汰出各个应用领域。 近年来,电力电子技术飞速发展,以功率半导体器件为核心的开关电源技术得到了广泛的使用。该技术有效地解决了在线性电源时代一直困扰人们的体积问题,同时效率也有了大幅的提高,因此被越来越多的应用于航天、工业、军事、IT设备等各个领域,并代表了未来一段时间内电能变换技术的发展方向。 与线性电能变换方式不同,应用电力电子技术的电能变换器,其电路中的半导体器件工作于开通和关断状态,因此功率管导通损耗显著减小,变换器效率大幅增加,此外,通过提高工作频率,变换器的体积得到了有效控制,根据法拉第定律可以得知,相同功率下,磁性元器件的体积与开关频率成反比,因此,随着功率半导体器件技术的发展,开关电源技术的工作频率也由原来的几十kHz逐渐提高到几百kHz。但是随着开关频率的不断提高,开关电源技术又面临着新的技术问题。首先,由于频率的提高,原本在总能量损耗中不占主要份额的开关损耗变得不可忽视,该损耗还会随着频率的升高而不断增大,大大降低了整个系统的效率。同时,由于开关损耗的增大,系统所需的散热元件体积也不断增加,因此整个系统的体积与重量也受到了较大的限制。另一方面,随着频率的升高,在开关开通关断瞬间的di/dt和dv/dt也会随之升高,这就会 - 1 -哈尔滨工业大学工学硕士学位论文 大大增加系统的EMI,,限制了开关电源在对EMI要求较高的场合的应用。 软开关技术正是为解决以上提到的问题而发展出来的,该技术的核心思想是减少开关转换时的电压电流交叠区以达到减少开关损耗的目的,同时由于在开关转换时,电流或电压值均处于较低水平,因此可以有效减少电流变化率及电压变化率,降低EMI。 鉴于对开关电源节能环保以及体积重量等方面的要求,本课题着重对软开关技术中的LLC变换技术进行讨论,相对于传统的硬开关,该技术可以实现开关管的零电压开通,同时还可实现变压器副端二极管的零电流开通与关断,大大减少能量的损耗,达到节能减排的目的,并且有效地控制散热元件的体积重量。该技术保证电路中谐振腔的电流与电压的正弦化,大大减小了di/dt和dv/dt,降低了系统的EMI。另外由于该技术的主要特点是利用变压器漏感参与谐振以实现软开关,因此该LLC谐振变换器还可以对变压器使用磁集成技术,这样还可以进一步减小磁性器件的体积。另一方面,同其他软开关技术相比,LLC软开关技术相对于有源箝位技术来说,无需额外的开关器件以及驱动电路,因此具有结构简单的优势,同准谐振软开关技术相比,LLC谐振变换技术还可以在较窄的调频范围内实现较高的调压比,而且在工作过程中开关管的最大电压应力也仅为母线电压,大大提高了电路的可靠性。因此作为一种技术优势较为明显的软开关技术受到人们的关注,广泛应用于大功率二次电源中。 1.2 软开关技术发展概况介绍 在相同功率下,全桥拓扑结构相对于其他类型的变换器结构,具有开关电压电流应力低的的特性,因此,在大功率应用场合具有不可替代的作用。为有效提高全桥变换器的功率密度,提高开关频率是较为有效地实现手段。但高开关频率所带来的高开关损耗,高EMI等问题又大大制约了电源技术的发展。为解决这一问题,大量新型软开关技术被应用于大功率全桥变换器之中,包括零电压移相全桥变换技术(ZVS-FB-PWM)、零电流移相全桥变换技术(ZCS-FB-PWM)、零电压零电流移相全桥变换技术(ZVSZCS-FB-PWM)、LLC谐振变换技术等等[1-5]。 1.2.1零电压移相全桥变换技术 零电压移相全桥变换技术主要目的是实现变换器中所有功率开关管的零电压开通以及关断。在电路正常工作过程中,每当开关关断时,利用箝位电容两端电压不可突变的原理实现零电压关断,同时利用电感的续流作用,在死区时间段内将电容电压降至较低水平来实现开关管的零电压开通。其拓扑结构原理 - 2 -哈尔滨工业大学工学硕士学位论文 图如图1-1所示。 图1-1零电压移相全桥变换技术 1.2.2零电流移相全桥变换技术 零电流移相全桥变换技术是为实现电路全部主开关管零电流开通与关断而发展出来的。该电路与其他移相全桥电路在控制方面略有不同,同一桥臂开关管导通时间存在交叠,因此该软开关技术在同一时间段最多有三只开关管同时导通。在该段时间内,利用副端的谐振电容与原端漏感的谐振作用实现开关的换流,并利用4只串联二极管的反向阻断作用最终实现了所有开关管的零电流开关。相比于前几种全桥软开关技术,该结构下,开关的开通、关断环境更好,同时副端整流二极管也实现了零电流,但是原端串联二极管在导通过程中仍会带来较大的导通损耗,同时经分析可知,副端的谐振电容最高电压为2倍的输出电压,在输出电压较高的情况下,电容电压应力较高,因此对电容的耐压特性要求也较高。图1-2即为该结构的原理图。 图1-2 零电流移相全桥变换技术 1.2.3有源箝位技术 有源箝位技术通过在电路中增加有源辅助电路,对谐振元件谐振过程的控 - 3 -哈尔滨工业大学工学硕士学位论文 制,进而实现主功率器件的软开关。如图1-3所示,该图中为有源箝位技术在移相全桥中的一种典型应用,该拓扑结构有效地实现了超前臂的零电压开关以及滞后臂的零电流开关。在电路工作过程中,与零电压移相全桥变换器工作过程类似,利用开关管Q1、Q4两端并联的钳位电容实现开关的零电压开关,利用副端的有源辅助电路中的箝位电容的电压对原端的电流进行复位,不但解决了移相全桥的环流问题,还可以实现滞后臂的零电流开关,大幅提高电路的工作效率。 图1-3有源箝位式移相全桥变换技术 1.2.4零电压零电流移相全桥变换技术 零电压零电流移相全桥变换技术根据桥臂不同,可以分别实现不同种类的软开关技术,超前桥臂利用原端钳位电容以及电感的抽流作用来实现开关的零电压开关,其工作原理与零电压移相全桥变换器的相似,但是与其他零电流移相全桥技术对比,滞后臂是通过原端的复位电容及漏感之间的谐振作用、以及磁开关技术来实现滞后臂的零电流开关。该种方式的优点在于,与有源钳位型拓扑结构相比,无需复杂的辅助电路,同时与零电流移相全桥技术相比,复位电容电压与输出电压无关,且电压应力较低,因此该技术可以以较低的代价实现零电流的功能。 Q1Q2D1D2inr1smQ4Q3D4D3 图1-4 零电压零电流移相全桥变换技术 - 4 -哈尔滨工业大学工学硕士学位论文 1.2.5 LLC谐振变换技术 谐振变换技术作为软开关技术中的一个重要分类,其技术特点是谐振器件全程参与能量传递的过程。谐振变换技术主要包含三种,即串联谐振技术,并联谐振技术以及串并联谐振技术。LLC谐振变换技术也属于谐振变换技术中的一种,由于其出众的特性,受到业界的广泛关注,具有很好的应用前景。相比其他谐振转换器,LLC 转换器具有较窄频率调节范围内实现较大的调压范围的优势,因此在负载突变时具有良好的稳压特性,同时可以大大降低输出滤波器的设计难度。 a) 不对称半桥结构 Q1Q2D1D2inrsmQ4Q3D4D3 b) 全桥桥结构 图1-5 LLC谐振变换器拓扑结构图 LLC变换器主要包括两种拓扑结构,不对称半桥结构[6,7,8]以及全桥结构,由于LLC谐振变换技术的工作特点,在相同功率条件下,不对称半桥拓扑结构中开关管的电流应力往往较高,因此前一种结构多用于高输入电压、小功率的场合,后一种被应用于中功率及大功率的场合[6-11]。 对于LLC全桥谐振变换器,其主要技术优势有,当开关频率介于电路的两个谐振频率之间时,原端开关管ZVS开通,副端整流二极管ZCS关断。由于主开关管均可以工作在软开关状态,大大降低了开关损耗,有利于电源的高频 - 5 -哈尔滨工业大学工学硕士学位论文 化,提高了电源效率,同时由于谐振腔电流的正弦化减小了由di/dt和dv/dt引起的干扰,提高了电源电磁兼容性,可以使用磁集成技术,将谐振腔中的串联谐振电感与变压器集成在一起,进一步减小变换器中磁性元件的体积。 1.3 本文的主要内容 全桥变换器相对于其他拓扑结构,在大功率应用场合具有较大优势,但传统的软开关技术应用于全桥拓扑结构后仍存在诸多问题,如占空比丢失,EMI较高,副端二极管反向恢复问题等,而LLC串联谐振技术较好的解决了上述难题,因此将该技术应用于全桥拓扑结构中,对变换器工作性能会有较大提高,但LLC变换器工作特性受输入电压与负载条件影响较大,特别在输入电压较低且负载状态由轻载向重载切换的情况下,变换器易出现容性开关状态,对变换器可靠性造成较大影响,为解决该问题,本文将会对LLC全桥变换器进行讨论,最终将提出一种较为合理的设计方法,在提高LLC全桥变换器可靠性的同时做到对效率的兼顾。 本文主要内容包括: (1) 对LLC谐振变换器的工作原理进行分析后,根据变换器工作频率所在的不同区间,分别对全桥LLC串联谐振变换器不同条件下的稳态工作过程进行详细讨论。 (2) 对变换器电路结构进行简化后,使用基波近似法(FHA)为谐振腔建立工作模型,并根据该模型,分别从变换器变压特性,安全工作条件以及效率等三方面分别对谐振腔参数的取值与变换器工作特性之间的关系进行讨论。 (3) 找出变换器实现零电压软开关的工作条件,根据变换器负载切换工作过程对负载端建立等效电路,对该电路进行暂态分析并给出变换器负载切换过程中暂态等效负载的计算方法。 (4) 综合变换器负载切换时的暂态等效负载值、谐振腔参数与变换器工作特性间关系以及软开关实现条件等因素,最终提出变换器谐振腔参数的设计方法。 (5) 对全桥LLC变换器的启动过程进行分析,建立此过程中变换器的等效电路,对该等效电路进行暂态分析后找出LLC变换器合理的软启动工作频率区间,提高变换器启动工作过程中的可靠性。 (6) 根据本文所提出的设计方法设计一台输出为48V/15A的全桥变换器,使用saber对变换器进行仿真,并最终制作一台样机对本所提出的设计方法进行验证。 - 6 -哈尔滨工业大学工学硕士学位论文 第2章 变换器稳态能量传输过程分析 2.1 引言 在大功二次电源中,全桥拓扑结构具有不可替代的优势,因此得到广泛的应用。由于对效率的要求越来越高,人们研究出了大量的软开关技术,并将其应用于全桥变换器中。对于传统的软开关技术,移相控制全桥较为容易实现软开关环境,其中使用较多的包括零电压(ZVT)移相全桥、零电压零电流(ZVT-ZCT)移相全桥以及有源钳位全桥软开关技术等。但是以上几种软开关技术仍然存在较多问题,诸如副端二极管反向恢复电压尖峰过高,变换器环流损耗大,软开关环境实现范围较窄,变换器电路结构复杂,可靠性差等。LLC谐振软开关技术可以实现变换器中所有开关管的零电压导通,副端二极管的零电流开关,有效解决了副端二极管的反向恢复问题,由于开关关断时电流较小,变换器中的环流损耗也大幅减小,同时该技术还可以在较宽范围内的实现软开关环境,此外,该类拓扑结构不但无需其他额外辅助电路实现软开关,提高了可靠性,还可以使用磁集成技术进一步减小变换器的体积[12,13,14]。 LLC谐振技术具有以上多方面优势,因此将该技术与全桥拓扑结构相结合将会显著提高大功率场合下变换器的工作性能[15],为更好地理解LLC全桥变换器的工作过程,本章将会对LLC全桥变换器的工作原理及稳态工作过程进行详尽分析。 2.2 变换器主电路拓扑结构 将LLC谐振技术与全桥变换器相结合,其拓扑结构如图2-1所示。 图2-1 全桥LLC谐振变换器主电路拓扑 - 7 -哈尔滨工业大学工学硕士学位论文 由开关管S1-S4构成全桥拓扑结构。图中,谐振腔中的谐振电感与变压器的励磁电感分别用Lr和Lm表示,Cr为谐振电容。输出与输入之间的隔离变压器结构也可以在中心抽头式与普通的单输出绕组之间进行选择,其中由前者构成的输出整流电路具有高效率的优势,但绕制较为困难,后者绕制简单,但效率相对较高。在图2-1中,变压器采用中心抽头结构,由D5、D6组成输出整流电路,最后通过输出电容Co进行滤波后得到直流输出电压。 2.3 LLC全桥变换器基本原理 与传统的软开关技术不同,LLC谐振变换器采用脉冲频率调制(PFM)的控制方式,通过改变输入谐振腔内部脉冲的工作频率实现对变换器输出电压的调整,其变换器的工作原理图如图2-2所示。 图2-2 全桥LLC谐振变换器工作原理图 图中,谐振腔内的谐振电容、谐振电感、励磁电感仍分别由Cr,Lr以及Lm表示,R1为输出电阻在变压器原端的等效值,Z1为励磁电感与等效电阻的并联等效阻抗。LLC谐振变换器的输入电压为直流电压,母线电压经过开关管斩波后输出方波,其频率与开关频率相同,对于半桥拓扑结构,该方波的幅值在0电压与母线电压之间变化,对于全桥变换器,其幅值在正、负母线电压之间变化。因此谐振腔的实际输入为频率可变的方波,在上图中使用脉冲电压源Ui代表。由于本文着重对全桥拓扑结构进行讨论,因此,下述所有相关分析均以全桥为例。对输入方波进行傅里叶分解,可得 ui(t)式中 UDC ——母线电压; ws——方波的角频率。 4UDC1sin(nwst) (2-1) n1,3,5...n由式(2-1)可知,方波含有所有所有开关频率的奇数倍谐波,但是由于谐振腔的品质因数Q值较高,可以将谐振腔内部的电流近似看作频率与方波中基波分量相同的正弦波,鉴于上述原因,可以将方波中高频分量忽略,而只使用方波中的基波分量对该等效原理图进行等效分析,即基波分量分析法(FHA)。 - 8 -哈尔滨工业大学工学硕士学位论文 采用基波分量分析法(FHA)后,对该等效电路的推导与计算过程与基本的谐振电路分析方式无异,根据图2-1即可推导出Lr、Cr的串联等效阻抗Zr, ZrjwsLr11j(wsLr) (2-2) jwsCrwsCr1 (2-3) 2LrCr根据谐振电路的工作特征,Lr、Cr的串联谐振频率f1为 f1由于Z1由负载等效电阻R1以及励磁电感Lm并联构成,其阻抗虚部的代数值恒定为正,因此当电路的工作频率高于f1时,谐振阻抗Zr为感性,其阻抗代数值为正,电路工作在降压状态下;当开关频率低于f1时,谐振阻抗Zr为容性,其阻抗代数值为负,电路工作在升压状态下。当开关频率与f1相同时,谐振阻抗为零,输出电压与输入电压相同并且与负载情况无关。在设计时,应保证额定状态下,电路工作于谐振频率f1,以提高电路性能。 根据以上分析可知,LLC变换器的基本工作原理是通过改变开关频率,对等效阻抗Zr的取值进行调整,从而实现对Z1两端电压即输出电压的控制。 2.4 LLC全桥变换器稳态能量传输过程 LLC变换器属于多谐振变换器中的一种,根据变换器的工作状态,LLC变换器的谐振腔实际组成在Cr、Lr与Cr、Lr、Lm两种结构之间自动切换,因此,变换器的谐振频率主要包含两种,一种为第一谐振频率f1,如式(2-3)所示,另一种为第二谐振频率f2 f21 (2-4) 2(LrLm)Cr根据变换器工作频率与第一谐振频率f1及第二谐振f2的关系可将变换器的稳态工作区间分为三部分,分别为fsf1、fsf1、f2fsf1,不同区间内,变换器工作特性不同。 为方便分析,假定变换器的输出电容足够大,输出电压恒定,以此为前提条件,下面将分别对三个区间的稳态工作过程进行论述。 2.4.1 fsf1时变换器能量传输过程 在该工作区间内,变换器存在多种工作状态,包括连续模式(CCM)以及断续模式(DCM),但由于在该工作区间内,变换器多工作于轻载状态下,因此, - 9 -哈尔滨工业大学工学硕士学位论文 这里将会着重对该工作区间内的断续模式进行介绍。fsf1时,LLC变换器的轻载条件下的波形如图2-3所示。由于全桥变换器一个开关周期内的模态过程具有对称性,所以将只对半个开关周期内的模态进行分析。根据下图可知,半个周期内,变换器主要包含6个模态。图2-4为变换器工作的模态图。 模态1(t0~t1):此时S1、S3开始导通,但是由于谐振腔的输入阻抗特性表现为感性,因此,谐振腔电流相位滞后于电压,电流仍保持上一个模态下的状态,此时电流方向为负,电流反向流过开关管进行续流,由于寄生二极管的钳位作用,开关实现零电压导通。在此阶段中,由于Lm两端电压较低,无法向副端提供足够的导通压降,副端整流电路无电流流过,负载能量由输出电容提供。此时谐振电流Ir与励磁电流ILm等值同向,在原端由Lm、Lr、Cr共同进行谐振,电路的谐振频率为f2。 图2-3 fsf1时LLC变换器轻载波形图 a) 模态1 - 10 -哈尔滨工业大学工学硕士学位论文 b) 模态2 c) 模态3 d) 模态4 e) 模态5 - 11 -哈尔滨工业大学工学硕士学位论文 f) 模态6 图2-4 fsf1时LLC变换器轻载模态图 模态2(t1~t2):开关管继续保持导通状态,但是由于谐振电流仍未改变方向,电路继续反向流过开关管S1,S3进行续流。在谐振腔的作用下,励磁电感Lm两端电压不断上升,当变压器副端电压达到副端整流电路导通阀值时,二极管D5开始导通,由于流过二极管的电流由零开始缓慢上升,实现二极管的零电流开通,副端电路无反向恢复问题。此时励磁电感电压ULm被副端电压钳位,其值为 ULmk(UDUo) (2-5) 式中 k —— 变压器原副端变比; UD —— 副端二极管导通压降; Uo —— 输出电压。 在该模态下,励磁电流变化率为 dILmk(UDUo) (2-6) dtLm由于励磁电感被副端电压钳位,励磁电感退出谐振腔,电路谐振频率变为第一谐振频率f1。由于谐振电流Ir相对于励磁电流ILm变化速度更快,谐振电流与励磁电流不再相等,此时有 ILmIr (2-7) 在此阶段电感电流与谐振电流仍保持同方向,因此副端能量实际由励磁电感提供,原端电流I1可由式(2-8)计算 I1ILmIr (2-8) 谐振电流Ir开始反向,此时由于开关管S1、S3处于导通状态,模态3(t2~t3):因此谐振电流开始正向流过开关管。由于励磁电流仍未改变方向,因此是由励磁电感与谐振电流共同向负载供电。由于副端二极管D5保持导通状态,励磁电 - 12 -哈尔滨工业大学工学硕士学位论文 感Lm被副端电压钳位,此时谐振腔由Lr、Cr组成,电路工作在第一谐振频率f1下。 模态4(t3~t4):该模态下励磁电感电流ILm方向改变,开始与励磁电流同向,此时开始由谐振电流同时向励磁电感与负载端提供能量,由于副端电压对励磁电感Lm的钳位作用,电路仍保持在第一谐振频率下工作,在该模态结束时,谐振电流Ir与励磁电流ILm相等,副端电流变为零,整流二极管D5停止导通,实现零电流关断。 模态5(t4~t5):由于负载较轻,谐振腔能量较低无法使副端电路导通,励磁电感Lm,谐振电感Lr以及谐振电容Cr共同参与谐振,电路谐振频率为第二谐振频率f2。此模态内,谐振电流Ir与励磁电流ILm仍为正方向,且保持等大同向。 模态6(t5~t6):所有开关管关断,由于关断时开关管的电压值、电流值仍保持在较高水平,因此开关管关断为硬关断过程,电路进入死区状态,谐振电流开始对四只开关管的寄生电容中的能量进行转移,当转移结束后,谐振腔的输入电压Uab变为-UDC,即S1,S3两端电压变为母线电压UDC,S2,S4两端电压变为零,S2,S4寄生二极管的钳位电压解除,电流开始通过寄生二极管进行续流。该模态内,谐振电流与励磁电流仍保持等大同向,由于励磁电感两端电压仍不足以使副端整流电路导通,电路仍工作与第二谐振频率f2下。 从下一模态开始,由全桥变换器的对称性可知,变换器的稳态工作过程与模态1相似,因此这里将不再赘述。 2.4.2 f2fsf1时变换器能量传输过程 当变换器工作频率满足f2fsf1关系时,变换器处于升压状态。在该区间内,变换器通常只工作于断续导通模式(DCM),图2-5即为变换器在f2fsf1区间内工作的波形图。同样根据全桥变换器的模态对称原理,这里只对半个开关周期的模态进行分析,对图2-5分析可知,在半个开关周期内共存在5个开关模态, 模态1(t0~t1):此时S1、S3开始导通。由于谐振腔的阻抗特性为感性,谐振腔电流Ir相位滞后于电压,电流方向仍保持负方向,由于开关S1、S3的导通内阻压降较寄生二极管导通压降小,因此谐振腔电流Ir开始反向流过开关管S1、S3进行续流。副端二极管D5导通,励磁电感Lm被输出电压钳位,励磁电流线性减小,谐振腔由Lr、Cr组成,电路谐振频率为f1,在谐振腔的作用下,谐振电流迅速减小,在该阶段内,负载端能量由励磁电感Lm提供。 - 13 -哈尔滨工业大学工学硕士学位论文 图2-5 f2fsf1时LLC变换器波形图 a) 模态1 b) 模态2 - 14 - 哈尔滨工业大学工学硕士学位论文 c) 模态3 d) 模态4 e) 模态5 图2-6 f2fsf1时LLC变换器模态图 模态2(t1~t2):开关管继续保持导通状态,谐振电流Ir变为正方向,开关管S1、S3内部开始流过电流。此模态下,二极管D5保持导通,励磁电感Lm两端仍然被副端电压钳位,励磁电流缓慢上升并保持负方向, 此时理想变压器原端电流I1满足 I1ILmIr (2-9) - 15 -哈尔滨工业大学工学硕士学位论文 负载端能量由母线及励磁电感共同提供,该模态下谐振腔的谐振频率为f1。 模态3(t2~t3):励磁电感继续保持被副端钳位的状态,谐振腔由Lr、Cr组成,电路工作在第一谐振频率f1下。励磁电流ILm变为正方向,与谐振电流Ir同方向,此时母线同时向励磁电感与负载提供能量。由于谐振作用,在该模态结束时,谐振电流迅速减小至与励磁电流相等。 模态4(t3~t4):在此模态内,谐振电流Ir与励磁电流ILm保持等大同向,变压器原端电流下降为0,副端整流二极管D5停止导通,二极管D5实现零电流关断,负载能量完全由输出电容Co提供。由于副端停止导通,副端电压对励磁电感的钳位作用消失,此时谐振腔由Lm、Lr、Cr组成,电路谐振频率为f2。 模态5(t4~t5):所有开关管关断,该过程为硬关断,电路进入死区状态,四只开关管的寄生电容在谐振电流Ir的作用下开始对其中的能量进行相互转移交换,当能量转移结束后,谐振腔的输入电压Uab变为-UDC, S2,S4寄生二极管的钳位电压解除,此后谐振电流通过寄生二极管进行续流。由于谐振腔的作用,励磁电感两端电压达到副端导通电压阀值,此时整流二极管D6开始导通,励磁电感被副端电压钳位,退出谐振腔,流过D6的电流开始由0缓慢上升,二极管实现零电流开通。由于谐振腔的作用,谐振电流Ir快速下降,其值小与励磁电流值,但与其保持同方向,此时负载能量由励磁电感提供。 接下来的模态与以上模态对称,因此这里将不再赘述。 2.4.3 fsf1时变换器能量传输过程 图2-7即为fsf1情况下,LLC变换器的波形图。 图2-7 fsf1时LLC变换器波形图 - 16 -哈尔滨工业大学工学硕士学位论文 在fsf1的情况下,LLC变换器输出特性与负载无关,其波形也与负载条件无关,对图中波形进行观察后可知,fsf1情况下的波形与f2fsf1的类似,只是不再包含情况中的模态4。因此,这里将不再对该情况下的模态进行赘述。 2.5 副端二极管零电流开关实现 上一小节根据变换器工作的区间,分别按fsf1、fsf1、f2fsf1三种情况对变换器的模态进行详细论述,在所有工作情况下,无论变换器工作于连续模式或断续模式,LLC变换器副端整流电路总可以保证在流过二极管的电流变为0之后,反向电压才开始加在该二极管两端,并且在二极管开启时,电流总是由0开始上升,LLC变换器的这一特性保证了副端二极管的零电流开关,同时消除了由于反向恢复问题而引起的副端二极管的电压尖峰。 2.6 本章小结 本章首先对LLC变换器的工作电路进行了简化,并根据该变换器的谐振特性使用基波近似法(FHA)对LLC变换器的工作原理进行了简要的讨论,而后分别按fsf1、fsf1、f2fsf1三种情况对稳态条件下,变换器能量传输过程进行详细论述,最后对LLC变换器副端二极管的零电流开关特性进行了讨论。 - 17 -哈尔滨工业大学工学硕士学位论文 第3章 LLC谐振腔参数与工作特性关系 3.1 引言 根据上一章分析可知,LLC变换器主要通过改变谐振腔的等效阻抗来实现对输出电压的调节,因此谐振腔参数的选择将会对变换器的工作特性造成很大影响。本章将会从变换器变压特性,安全工作条件以及效率等三方面分别对谐振腔参数的取值与变换器工作特性之间的关系进行讨论。 3.2 LLC全桥变换器基波近似模型 由于LLC变换器主要依靠谐振腔的谐振特性完成对输出电压的调整,因此谐振腔参数的取值对变换器的工作特性有着很大影响,在本小节,首先将会对全桥变换器拓扑结构进行简化,使其与LLC变换器的工作原理图相对应,在其后几节中将使用基波近似法(FHA)分别从变压特性,安全工作条件以及效率等三方面来分析谐振参数与换器工作特性之间的关系。 输入S1开关网络S2谐振腔变压器整流电路滤波负载电路电路结构图CrLrD1UinC1LmD2C2RS4S3激励源谐振腔CrLr等效电阻工作原理图UiLmR1 图3-1 全桥LLC变换器结构简化图 由于全桥LLC变换器主电路的结构较为复杂,因此有必要对该拓扑结构进行简化,使其与图2-2中的LLC变换器工作原理图相对应,以简化分析过程。图3-1介绍了其简化过程,在图中,将输入以及开关网络合并在一起,共同简化为原理图中谐振腔的激励源Ui,将变压器,整流电路,滤波电路以及负载等 - 18 -哈尔滨工业大学工学硕士学位论文 四部分合并在一起,共同等效为原理图中的等效电阻,最后结构图的谐振腔直接与原理图中的谐振腔进行等效。 变换器工作原理图中,谐振腔的激励源是由结构图中的输入及开关网络两部分共同等效而来的,因此在工作原理图中,激励源的输出波形应与结构图中开关网络输出的波形相同。在全桥拓扑结构中,开关网络输出的波形为幅值为正负母线电压的方波,其波形图如图3-2所示。 根据式(2-1)对方波进行傅立叶分解,并展开可得 44UDCsin(3wst)UDCsin(5wst) (3-1) 35除式(3-1)中第一项为开关频率的基波分量以外,其余函数项均为频率为开ui(t)UDCsin(wst)关频率奇数倍的高次谐波。由于谐振腔的谐振特性,电路的品质因数Q较高,因此谐振腔只会对方波中与谐振频率较 为接近的基波分量敏感,同时由于谐振腔的作用,根据上一章的模态分析可知,谐振电流ir(t)可近似看作正弦波,其频率与开关频率相同,其表达式为 ir(t)2Irsin(wst) (3-2) 4式中 ——谐振电流与输入电压的相位差; Ir——谐振电流有效值。 osssss 图3-2 变压器副端输出电压波形图 所以在讨论谐振腔工作特性时可以使用基波近似法(FHA),即将式(3-1)中的高次谐波近似忽略不计[16,17,18,19,20],此时谐振腔的输入激励源ui(t)可以看做为一个正弦电源uiF(t),其表达式为 uiF(t)4UDCsin(wst) (3-3) 在变压器副端导通时,由于输出电压钳位作用,实际变压器副端电压 uo_sec(t)的波形为幅值在正负输出电压之间变化的方波,其频率与开关频率相同,对其进行傅立叶分解可得 - 19 -哈尔滨工业大学工学硕士学位论文 uo_sec(t)4Uo1sin(nwst) (3-4) n1,3,5...n式中 ——输出电压与输入电压的相位差; Uo——输出电压。 同样由于流过变压器副端的电流为频率与开关频率相同的正弦波,在实际推导时也可以使用基波近似法(FHA),则变压器输出电压uo_sec(t)可近似表达为 uo_sec(t)4Uosin(wst) (3-5) 由于负载为纯电阻,因此变压器副端输出电压与输出电流保持同相位,输出电流io_sec(t)表达式为 io_sec(t)Ire_osin(wst) (3-6) 式中 Ire_o ——输出电流有效值。 最后就可以根据欧姆定律求出变压器副端输出等效电阻Rac 8Uo2822R (3-7) Racio_sec(t)Po式中 Po ——输出功率; R ——负载电阻。 uo_sec(t)进一步可以求出变换器工作原理图中的变压器原端等效负载阻值R1 R1k2Rac式中 k ——变压器变比,原端比副端。 82k2R (3-8) 这样,变换器原理图中的所有参数均与变换器结构图中的参数建立的联系。下面将根据变换器工作原理图分别由变换器变压特性,安全工作条件以及变换器效率三方面入手,对谐振腔参数与变换器工作特性关系进行讨论。 3.3 LLC全桥变换器增益与负载适应特性关系 变压比M的选取对变换器的工作区域、性能均有很大影响[21,22],因此对变换器工作特性进行讨论时有必要首先对变压特性进行详细分析。 变换器的变压特性主要通过变压比M体现,在变换器工作原理图中,等效电阻两端电压与输入电压之比即为变压比M,该值还可通过计算输出电压折算到变压器原端值kUo与直流母线电压UDC的比值得到,其表达式如式(3-9)所示 - 20 -哈尔滨工业大学工学硕士学位论文 MkUoUDC1(1LrLrf12Lr1fsf12)2()LmLmfs2CrR1f1fs2 (3-9) 为简化式(3-9),将漏感Lr与励磁电感Lm之比定义为参数m mLr (3-10) Lm根据变换器工作原理图与结构图之间的关系,可以推导出原理图电路的品质因数Q,如式(3-11)所示 QLr1Lr1 (3-11) 8CrR1Crk2R2最后将开关频率关于第一谐振振率进行归一化处理,得到 fsnfs (3-12) f1将式(3-10),式(3-11),式(3-12)带入式(3-9)中可得 M(1m1m2122)Q(f)sn2fsnfsn (3-13) 根据式(3-13),变换器的变压比M除与变换器工作频率有关外,参数m以及电路的品质因数Q的取值也会对变换器变压比的造成很大影响[23,24]。为能对该种影响进行较为直观的认识,分别对式(3-13)中不同m与Q的取值,使用Matlab做图,如图3-3所示,根据参数m的不同取值,分别做出了 3-3a)与 3-3b)两幅图,图中,纵轴为变压比M的取值,横轴为关于第一谐振频率归一化后的开关频率,同时对与不同Q值条件下的变压比曲线,各自使用了相应线形进行标注。根据图中信息,我们可以得到如下结论。 对于所有的m与Q值,变换器变压特性以第一谐振频率f1为界,当工作频率fs高于该频率时,变压比小于1,变换器处于降压状态,当工作频率fs低于该频率时,变压比大于1,变换器处于升压状态。当工作频率fs与第一谐振频率f1相等,变压比M取值恒为1,依据上一章结论,由于谐振作用,在第一谐振频率f1处,谐振电感Lr与谐振电容Cr的等效串联电阻为零,此时原理图中等效电阻两端的输出电压与输入电压相等,即变压比M为1,且与m,Q取值无关,因此在该种工作条件下,变压特性与负载条件无关,此时变换器的输 - 21 -哈尔滨工业大学工学硕士学位论文 出特性最好。 在m相同的条件下,对于相同工作频率,Q值越大变换器的变压比M取值越小,因此变换器负载变重时,控制器会使变换器工作频率减小,以保证变压比M恒定不变,达到稳定输出电压的目的。 a) m=0.1 b) m=0.8 图3-3 变压比特性图 当m取值不同时,比较图3-3a)与图3-3b)两图可知,m越大,增益曲线越陡,相同的变压比变化范围,变换器的工作频率范围越窄。此外,在变换器降压特性区间内,相同工作频率,相同Q值条件下,m越大,变压比M取值越小,这说明变换器m取值越大,变换器的降压特性越好,同时证明m的取值对变换器的轻载工作特性有很大影响。 - 22 -哈尔滨工业大学工学硕士学位论文 相同工作频率,空载状态下时,相较于其他负载条件,变换器的变压比M有最大值,在轻载条件下,对于给定的工作频率范围,变换器对降压特性要求较高,由于空载属于轻载状态的极限条件,因此只要使变换器空载变压比的极限值满足要求,变换器轻载状态的变压特性也自然会同样适用于设计指标,将空载条件Q=0带入式(3-13),可以得到变换器空载变压比ML的表达式 ML1m1m2fsn (3-14) 当工作频率趋近无穷大时,即可得变换器空载增益的极限值ML(),如式(3-15)所示 ML()1 (3-15) 1m式(3-15)可以进一步证明,变换器空载条件下的变压比的极限值仅与m有关而与其他参数无关,因此,当变换器的工作频率范围确定后,可以通过调整m的取值来满足变换器的轻载工作特性要求。 3.4 LLC全桥变换器安全工作条件 LLC谐振变换器实际软开关方式为零电压开关,在该种工作方式下,变换器中所有开关管均可以实现零电压导通[25,26],在该模式下,变换器谐振腔阻抗特性一直保持在感性特性下。根据变换器的工作原理图可以推导出谐振腔的输入阻抗Zin表达式 jwsLmR1ws2L2RwsLmR1211m1jwsLr2Zinj(wL) (3-16) sr222jwsCrjwsLmR1R1ws2L2RwLwCm1smsr当式(3-16)中的虚部大于零时,变换器的输入阻抗为感性,谐振电流滞后于输入电压,但当变换器等效输出负载过大时,虚部小于零,变换器的输入阻抗为容性,谐振电流超前于输入电压,开关管零电压软开关特性丢失。 在上一章对变换器进行模态分析时,均假设变换器谐振腔的阻抗变现为感性,即变换器工作于零电压开关状态,因此,为更好的分析变换器在谐振腔表现为容性阻抗条件下的工作状况,下面将会对该过程其进行模态分析。由于LLC变换器属于多谐振变换器,因此在容性状态下,即使根据负载条件不同,变换器也具有多种工作过程,因此在描述变换器稳态工作过程时,本小节只选择了众多工作状态中的典型进行说明。 容性工作情况下,变换器波形图如图3-4,根据波形图,在一个开关周期内,变换器总共包含8个稳态工作过程,但由于全桥变换器稳态工作过程的对 - 23 -哈尔滨工业大学工学硕士学位论文 称性,因此只选择半个开关周期中的4个稳态工作过程进行描述,模态图如图3-5所示。 模态1(t0~t1):S2、S4保持导通。由于谐振腔的阻抗特性表现为容性,谐振电流Ir相位超前于输入电压,电流开始由负向变为正向,谐振电流反向流过开关S2、S4续流。在该模态内,励磁电流ILm与谐振电流Ir保持同方向,但由于谐振电流相对较小,因此负载能量实际由励磁电感Lm提供,由于副端二极管D6持续导通,励磁电感Lm被输出电压钳位,谐振腔由Lr、Cr组成,电路谐振频率为f1,在谐振腔的作用下,谐振电流迅速增大,在此阶段结束时,励磁电流与谐振电流等值同向,副端电流为0,二极管D6停止导通并实现零电流关断。 driveS2ONS4ONS1ONS3ONS2ONS4ONS1ONS3ONLmRS1S3S2S4001234 图3-4 f2fsf1时LLC变换器容性工作状态波形图 a) 模态1 - 24 -哈尔滨工业大学工学硕士学位论文 S22S1rr1D5aLminr1bm2D6S4S3 b) 模态2 c) 模态3 d) 模态4 图3-5 f2fsf1时LLC变换器容性工作状态模态图 模态2(t1~t2):开关管S2、S4关断,电路进入死区,谐振电流开始通过S2、S4的寄生二极管进行续流,由于谐振腔的作用,谐振电流值开始超过励磁电流值,此阶段开始,负载端能量由母线提供,同时副端整流二极管D5开始导通,其电流由0开始缓慢增加,二极管实现零电流开通。由于励磁电感被副端电压 - 25 -哈尔滨工业大学工学硕士学位论文 钳位,电路谐振频率仍为f1。与感性工作状态不同,谐振电流不会对四只开关管的寄生电容进行能量交换。 模态3(t2~t3):此时S1、S3开始导通,导通时开关管S1、S3两端电压为母线电压,因此开关管为硬开通过程。由于谐振电流已经变为正向且电流值较大,在导通瞬间,会有很大的电流在开关管S1、S3与开关管S2、S4的寄生二极管之间进行换相,而寄生二极管由于反向恢复问题会有很大的反向电流流过,所以S1、S3在开始导通时会存在很大的电流尖峰,当二极管反向恢复完毕后,开关管内电流恢复正常。在此阶段中,励磁电流与谐振电流保持同向且励磁电流值大与谐振电流值,负载端能量由母线提供。由于副端整流二极管D5持续导通,励磁电感被副端电压钳位,变换器谐振腔的谐振频率为f1。 模态4(t3~t4):开关管继续保持导通状态,励磁电流ILm变为负方向,谐振电流保持正方向,此时理想变压器原端电流I1满为励磁电流与谐振电流之和,负载端能量由母线及励磁电感共同提供,此模态下,二极管D5保持导通,励磁电感Lm两端仍然被副端电压钳位,该模态下谐振腔的谐振频率为f1。在此模态结束的同时,谐振电流减小为0。 接下来的模态与以上模态对称,因此这里将不再赘述。 经过以上模态分析可知,由于变换器在工作过程中谐振腔的阻抗表现为容性,谐振电流相位超前于输入电压,在模态3开始前,谐振电流已经开始流过开关管S2、S4的寄生二极管进行续流,在模态3开始时,开关管S1、S3开始导通,由于此时电流方向为正,在开关导通的瞬间就有很大的电流流过其中,而S2、S4寄生二极管由于反向恢复原因,此时会有很大的反向电流流过该二极管,这一工作过程导致同一桥臂出现瞬间直通现象,直通电流造成的电流尖峰会在开关管两端产生极高的电压尖峰,最终击穿开关管、烧毁变换器。因此为保证变换器能安全工作,应使谐振腔的阻抗特性在变换器的工作过程中永远保持在容性区域外。因此,LLC变换器的安全工作区域由谐振腔阻抗特性决定,因此在讨论LLC变换器安全工作条件时,需要首先对谐振腔的阻抗特性区间进行区分。为简化推导过程,首先将式(3-16)中输入阻抗Zin的表达式关于谐振腔特征阻抗Z0进行归一化处理,可得 Zinnfsn2Q1fsn2fsnmZinCrZin2j(2) (3-17) 2222Z0LrmfsnQmfsnQfsn谐振腔阻抗特性主要通过式(3-17)中的虚部决定,因为电路安全工作的前提条件是变换器谐振腔的输入阻抗特性始终不会表现为容性,所以归一化特征阻抗Zinn的虚部应不小于零,为找出变换器安全工作的极限条件,令虚部等于零,进行推导后可以得到变换器关于第一谐振频率f1归一化极限安全工作频率 - 26 -哈尔滨工业大学工学硕士学位论文 fsnb的表达式,如式(3-18)所示 fsnbQ2m(1m)[Q2m(1m)]24Q2m2 (3-18) 2Q2观察式(3-18)可知,极限安全工作频率主要由品质因数Q以及参数m确定,对于给定的m与Q值,若变换器工作频率低于时,变换器进入容性工作状态,反之则是感性工作区域。对式(3-18)重新进行整理,得到临界品质因数Qb的表达式,如式(3-19)所示 Qbmm2() (3-19) 21fsnfsn根据式(3-19)可知,当开关频率高于第一谐振频率时,临界品质因数Qb无实数解,即当变换器处于降压工作区域时,变换器永远工作于安全区域内,当开关频率小于第一谐振频率时,Qb的取值范围实际由参数m确定。为更好地理解变换器安全工作条件与Q及m之间的关系,将式(3-19)带入式(3-13)中可得变换器的临界变压比公式 Mbfsnfsn(1m)m2 (3-20) 使用matlab对式(3-20)进行作图,如图3-6所示,以m=0.5为例,图中的黑色虚线即为临界变压比曲线,即阻抗特性分界线,在分界线左侧的变换器工作区域内,谐振腔输入阻抗表现为容性,反之,在右侧,谐振腔输入阻抗表现为感性,在设计时我们应该保证LLC变换器始终工作在分界线的右侧以保证安全。 图3-6 m=0.5时的阻抗特性分界图 - 27 -哈尔滨工业大学工学硕士学位论文 根据图中不同负载条件下变压特性曲线的位置关系可知,当m取值确定时,Q值越大,即负载越重,变换器的安全工作频率范围越小,因此可以确定,LLC变换器的最坏工作情况出现在输入电压最低,负载最重时,此时变换器工作频率最低,工作点最接近安全工作区域的的分界线,设计时应注意保证在该工作情况下变换器工作于感性区域内。 当m取值不同时,对图3-3a)及图3-3b)两图进行比较,m越大,安全工作区域分界线越陡,分界线在升压区域内包围的面积越小,同时对比两图中Q值相同的变压比曲线可知,m越大,允许变换器安全工作的最小频率越大,对(3-21)进行变换,可以求得在给定m的安全工作区域内,临界变压Mmax比所对应的最小工作频率fsnmin fsnmin1111(12)mMmax (3-21) 对式(3-21)进行整理,同样可以得到关于m及最小工作频率的相同结论,即参数m对变换器工作频率范围的选取有很大的影响,对于给定的变压比设计要求及变换器工作频率范围,可以通过调整m的取值来实现设计要求。 3.5 LLC全桥变换器效率特性与谐振腔参数关系 LLC变换器相对于其他类型的变换器的主要优势在于其工作效率可以达到相对较高的水平[27,28,29],因此如何优化参数,进一步提高效率成为设计过程中的核心问题之一。为解决这一课题,首先要找出谐振腔参数与效率之间的内在联系。 由于谐振腔内部所包含的电感、电容等元件只消耗无功功率,依据变换器结构图,在LLC谐振变换器中,对效率影响较大的主要包含三部分,分别是开关管损耗,变压器损耗以及整流二极管损耗,变换器的总损耗E1的公式为 E1ESEXED (3-22) 式中ES—— 开关管损耗; EX—— 变压器损耗; ED—— 整流二极管损耗。 变压器绕制工艺,磁芯材料选择对变压器损耗有极大影响[30],而本小节主要讨论谐振腔参数与损耗之间的关系,因此这里将不会对变压器的损耗做具体讨论。 二极管损耗ED实际为二极管导通损耗,由于二极管导通时其正向导通电压Uf保持恒定,因此在计算每只二极管导通损耗时只需取一个开关周期对二 - 28 -哈尔滨工业大学工学硕士学位论文 极管电流进行积分而后与导通压降相乘即可,其表达式如下 EDUf0SID(t)dt (3-23) T根据第二章中的变换器稳态工作过程分析,无论何种工作状态,每个副端二极管只会导通半个开关周期,在稳态下,负载电流恒定,因此根据安秒平衡公式,一个开关周期内整流电路输出电流与负载电流应满足 Io式中Io —— 输出电流; Iret—— 整流电路输出电流。 1TSIret(t)dt (3-24) TS0由于LLC变换器工作时,谐振腔电流近似为正弦波,该波形关于半个开关周期奇对称,而变压器副端输出电流与谐振电流波形相似且相位相同,因此,整流电路输出电流为近似正弦半波,其周期为开关周期的一半,根据上述变换器工作过程,可得如下关系 Io1T2SItdtItdt()() (3-25) 0DretTS02TS将式(3-25)带入式(3-23)可得变换器二极管导通损耗的最终计算公式 EDIoUfTs (3-26) 2在式(3-26)中只含有输出电流Io及正向导通压降Uf两个变量,因此对于二极管的导通损耗只能通过选择具有更小导通压降的二极管来减小,而无法通过调整变换器的谐振参数进行优化。 传统变换器中,开关损耗主要有三部分组成,包括开通损耗Eon,关断损耗Eoff以及导通损耗Eson,但由于LLC变换器在工作时可以实现零电压开通,因此开通损耗极小,实际可以忽略不计,因此在LLC变换器中开关损耗ES实际为 ESEsonEoff (3-27) 关断损耗Eoff主要产生于开关关断时电流与电压的交叠区域,持续时间为tf,其计算方式为 Eoff0sIS(t)Uoff(t)dt (3-28) t式中Is(t) —— 流过开关的电流; Uoff(t)—— 开关关断电压。 根据开关管工作特性可知,当电流下降时间结束时,开关管电流IS(t)变为 - 29 -哈尔滨工业大学工学硕士学位论文 零,该(0, tf)时间段内IS近似满足关系 tIS(t)Iroff(1) (3-29) tf式中Iroff —— 开关关断瞬间的电流。 根据上述关系可以求出在开关关断过程中,开关关断电压Uoff(t)变化关系 Iroff21tf(())Uoff(t)IItdtt (3-30) roffs2Coss02Cosstf式中Coss —— 开关输出电容。 将式(3-29)与式(3-30)带入式(3-28)可以得到变换器关断损耗的计算公式 EofftIfroff224Coss (3-31) 对变换器进行模态分析时可以发现,在开关关断瞬间,谐振电流Ir总近似等于励磁电流最大值ILmmax,因此可以使用ILmmax对关断瞬间电流Iroff进行计算。在一个开关周期内,根据LLC变换器工作过程的对称性可知,励磁电流变化量ILm与ILmmax有如下关系 ILm2ILmmax (3-33) 一个开关周期内,励磁电流变化量ILm应满足 ILmULmTS (3-34) Lm2当变换器工作于连续模式下,变压器副端始终导通时,此时励磁电感受输当变出电压钳位作用,其电压值ULm与输出电压在变压器原端的反射值相同,换器工作于断续模式下时,受谐振腔的作用,在副端不导通的状况下,励磁电感两端电压值仍近似与输出电压在变压器原端的反射值相同,因此近似有 ULmkUo (3-35) 最终可以计算出开关管关断瞬间的电流值Iroff Iroff将式(3-36)代入式(3-31),整理后可得 kUoTs (3-36) Lm42tkUoTs (3-37) Eofff384CossL2m依据式(3-37),关断损耗与诸多参数均有关系,但在给定设计要求的前提条件下,由于tf受开关管性能制约较大,因此只有开关输出电容,励磁电感等 - 30 -哈尔滨工业大学工学硕士学位论文 在参数选择上存在较大的灵活性,因此减小关断损耗的主要措施为增加开关管两端的并联电容或励磁电感,其中励磁电感为平方项,因此增加励磁电感量的效果更好。 开关管导通时,其导通电阻值Ron近似恒定不变,因此开关的导通损耗Eson主要受谐振电流有效值Irrms影响,Eson的计算公式为 2EsonRonIrrms (3-38) 由于谐振腔的作用,无论在何种工作状态下,谐振电流波形均与正弦波近似,为简化分析,这里选择fsf1对变换器参数与开关导通损耗之间的关系进行讨论,该条件下的电流波形图如图3-7所示。为方便说明,将任一组开关关断的时间点定为零点,由于LLC变换器工作的对称性可知,同一组开关管两次关断的时间间隔即为一个开关周期,而与另一组开关关断的时间间隔即为半个开关周期。依据变压器模型,变压器原端电流应为谐振电流与励磁电流之间的差值,根据式(3-24)可知,图中阴影部分面积即与变换器向负载提供的电荷量相等。根据以上关系,对阴影部分的面积进行积分,并整理可得 IrrmscosUo2Rk2 (3-39) 式中 ——谐振电流的相位角; Irrms ——谐振电流的有效值。 开关管关断时,根据谐振腔电流与励磁电流之间的关系可得 IrrmssinkUoTS (3-40) 42Lm将式(3-21)与式(3-22)联立,整理后可得 Irrmsk4R2TS224 (3-41) 2Lm42kRUoIrILm0TS/2TS/2TS 图3-7 变压器原端电流关系图 将式(3-41)代入式(3-38)可以得到Eson的最终计算公式 Eson RonUo232k2R2- 31 -k4R2TS224 (3-42) 2Lm哈尔滨工业大学工学硕士学位论文 由于导通电阻受开关工作特性影响较大,因此在给定设计参数的情况下,如式(3-23)所示,提高励磁电感即可以有效减小原端谐振电流,进而减小导通损耗。 经过本小节的论述后可以得到如下结论,变压器损耗以及二极管损耗主要受材料及工艺限制,而与变换器谐振腔参数关系较小,励磁电感量对谐振电流值影响很大,进而与变换器中的开关损耗有很大关系,励磁电感越大,开关损耗越小。因此在设计时,应在设计允许的条件下,尽量增大励磁电感的电感量,已达到提高效率的目的。 3.6 本章小结 在上章工作原理及模态分析的基础上,本章首先对变换器的主电路结构进行了简化;然后分别从变换器变压特性,安全工作条件以及效率等三方面分别对谐振腔参数的取值与变换器工作特性之间的关系进行讨论,为下一章参数设计过程提供理论依据。 - 32 -哈尔滨工业大学工学硕士学位论文 第4章 变换器参数设计方法讨论 4.1 引言 当负载由轻向重切换时,LLC变换器的等效输出负载的瞬时值会有较大变化,变换器工作点较易进入容性工作区域,因此本章首先会对负载的切换过程进行分析并对切换过程中的等效负载值进行计算,进而找出变换器最差工作情况作为设计参考,以提高变换器的可靠性,此后将会对变换器的零电压导通条件进行讨论,最终,结合以上所有章节中所得出的结论,给出较为合理的设计过程,在满足设计要求的同时尽量实现最优的工作性能。 4.2 暂态容性开关问题 正如对变换器变压比公式分析后得出的结论所述,在m一定的条件下,相同频率下,变换器负载越重,变压比越小,因此在重载条件下,为稳定输出电压,控制器将会减小工作频率,提高变换器工作时的变压比,但经过对变换器安全工作条件进行分析后可知,在谐振腔参数确定的条件下,负载越重,Q值越大,变换器的最小极限安全工作频率越大,所以当负载加重时,变换器工作点会加速接近容性工作区,在满载且输入电压最低的情况下,Q值最大,变换器工作频率最低,此时为变换器的最坏工作状态。但实际设计LLC变换器时,总希望得到较高的效率,根据上一章的结论,励磁电感Lm越大,原端谐振电流值越小,开关管的关断损耗及导通损耗也越小,变换器效率越高,但是Q值与Lm之间存在一定联系,将式(3-10)代入(3-11)可得 QmLm1 (4-1) R1Cr根据式(4-1),在相同负载条件下,增大励磁电感Lm会使品质因数Q变大,而将式(3-21)代入式(3-19),整理后可得到安全工作范围内,最大变压比下所允许的最大品质因数值Qmax Qmax2Mmaxm12 (4-2) MmaxmMmax1在(4-2)中,在给定的设计要求的情况下,Mmax由输出电压及最小输入电压决定,因此恒定不变,因此最大品质因数值Qmax实际由m决定,而设计要求中的工作频率范围及最小变压比共同决定m的取值,因此m的取值范围相对很小,最终,所以,在根据变换器降压工作特性决定m的取值后,最大品质因数值 - 33 -哈尔滨工业大学工学硕士学位论文 Qmax实际为定值。但是为了提高效率,励磁电感量Lm往往取值较大,这种做法会增大Q值,使电路在满载情况下更加接近容性工作区域,降低了电路的可靠性。 变换器在上电工作后,经常存在轻载向重载切换的过程,由于控制器存在动态响应时间,会造成输出电压暂时跌落,此过程中变换器的等效负载暂态值会变大,同时受励磁电感量Lm取值较大的影响,在该过程内,变换器工作点很容易进入容性工作区域内,特别在输入电压最低,同时变换器由空载向满载切换时更加危险[31]。 为解决该问题,首先需要对变换器负载切换时,负载电压跌落过程进行分析,由于负载切换情况较多,这里只选择其中的极限情况,即变换器由空载向满载切换的过程,此时变换器输出电压跌落值最大,该过程的输出电压变化波形图如图4-1所示。 第一阶段 (ta,tb):ta时刻,负载由空载向满载突变,由于控制器无法立刻调整输出功率,变换器向负载提供的实际能量远小于负载所需能量,此阶段内,输出电容向负载端提供几乎全部能量,因此输出电压迅速下降,为稳定输出电压,控制器减小工作频率,提高变换器输出能量直,至tb时刻,此时变换器输出能量与负载端所需能量相等,输出电容停止向负载端提供能量同时输出电压停止下降。 Uo/Vtsuot1uomintatbtct/s 图4-1 负载电压跌落过程示意图 第二阶段 (tb,tc):控制器继续减小工作频率,变换器输出能量继续增加并同时向输出电容及负载传递能量,输出电压回升,最终经控制器调整后,在tc时刻重新稳定,由于在该过程内,输出电流会大幅增加,这一过程等效于增大了负载,即增大了Q值,由于此时变换器工作频率较低,若在设计时没有保留足够裕量,则电路可能出现暂时性容性开关状态,直至输出电压重新稳定。虽然该段时间较短,但电路仍可能出现烧毁的危险,给安全带来隐患。 - 34 -哈尔滨工业大学工学硕士学位论文 所以,在设计时应考虑到由于突变带来的暂态等效负载增大的影响,使谐振腔的品质因数Q在负载切换的暂态情况下仍能保持足够的安全裕量,提高电路的可靠性。 因此,在本小节提出了一种计算方式,保守的对负载突变过程中的等效负载值进行计算。 为提高电路工作的可靠性,应选择最坏情况经对暂态负载进行计算,而变换器的最坏状况为输入电压最低并且负载由空载向满载突变,此时变换器的工作频率最低,工作点最接近容性工作区域。为提高待机效率,变换器在空载状态下通常处于间歇工作模式,在该状态下变换器实际处于时断时续工作状态,因此在负载由空载向满载突变时,将初始t1时间段内负载所需的能量近似看作是由输出电容单独提供,该过程内输出电压快速跌落,直至t1时段结束时,变换器输出能量与负载能量相等,此时输出电压最低,所以,t1时间段内的负载侧等效工作电路图如图4-2所示。假设输出滤波电容较大,其电压跌落值相对输出电压值较小。 o
图4-2 负载突变等效原理图 在该电路中,电容电压初始值为输出电压Uo,对电容电压列暂态公式 uc(t)RCo对式(4-3)求解,并代入初始条件可得 duc(t) (4-3) dtuc(t)UoetRCo (4-4) 式中Co——输出电容。 由于控制器的调节作用,电压跌落所用时间与调整时间相比较小,通常该阶段所用时间t1占整个变换器调整时间ts的十分之一至五分之一,因此当t1时间段结束时,电容电压最低值Uomin为 UcminUoets5RLCo (4-5) 式中ts——调整时间。 t1时间段结束后,变换器开始同时向负载及电容提供能量,电容电压开始 - 35 -哈尔滨工业大学工学硕士学位论文 上升,经过控制器调整,在tc时刻输出电压重新稳定至Uo,在此阶段内,由于输出能量较大,而输出电压波动值相对Uo较小,因此输出电流很大,该阶段内,为使输出电压恢复,变换器需要向电容输送的总电荷量为 Q1Co(UoUomin) (4-6) 负载消耗的总电荷量为 Q2Uo4ts (4-7) 5R将式(4-6)与式(4-7)合并进而可以求出(tb,tc)时间段内的的等效电流Is Is5Q1Q2 (4-8) 4ts由于输出电压波动量相对较小,输出电压可认为近似不变,因此根据式(4-8)进而可以计算出(ta,tb)时间段内的等效负载为 RZUo4ts (4-9) 5(Q1Q2)使用式(4-9)得出的结论对变换器的品质因数Q进行计算,并根据最大品质因数Qmax对Q值保留一定裕量后,即可保证变换器在所有工作情况下仍能保持在感性工作区域中,该等效负载计算方法可以有效提高变换器的可靠性。 4.3 零电压开通实现条件 相对其他全桥软开关技术,LLC全桥谐振变换器主要有两大优势,一方面由于谐振腔的作用,变换器可以实现更高的工作效率,另一方面,变换器可以实现更宽的软开关范围。在本小节中将会对变换器的软开关实现过程进行分析,最终找出变换器的软开关条件,进而对软开关范围进行优化[33,34]。 LLC变换器在工作正常过程中,其工作点处于感性区域中,理想状态下,变换器中所有开关管均可实现零电压开通[35,36],其工作过程模态图如图4-3所示, 波形图如图4-4所示。 阶段1(td1,td2),如图4-3a)所示,td1时刻开始,开关管S1、S3关断,电路进入死区,在该阶段内,需要利用电路中的谐振电流Ir对寄生电容Coss1, Coss2, Coss3, Coss4进行能量转移,当td2时刻该阶段结束,此时Coss1, Coss3两端电压与母线电压相等,Coss2, Coss4两端电压变为零,电压Ua也同时变为零,开关管S2、S4寄生二极管的钳位电压被解除。在第二章模态分析中,无论变换器工作于断续模式亦或是连续模式,当死区时间开始,谐振电流Ir总是与励磁电流ILm近似相等,同时由于死区时间只约占整个开关周期的十分之一,因此可以将(td1,td2)时 - 36 -哈尔滨工业大学工学硕士学位论文 间段内谐振电流电流Ir看作近似不变且一直与励磁电流ILm相等,根据式(3-36)可以得到死区开始时的谐振电流电流Iroff,由于开关管电流下降tf时间远小于死区时间,所以开关管关断电流的影响可忽略不计,最终可以求出寄生电容能量交换所需时间tdc tdc2cossUin (4-10) Iroff式中 coss——开关管寄生电容,且有coss = coss1 = coss2 = coss3 = coss4。 a) b) 图4-3 变换器死区稳态工作过程图 阶段2(td2,td3),如图4-3 (b)所示,谐振电流Ir继续保持正方向,由于td2时刻开始,开关管S2、S4寄生二极管钳位电压的变为零且开关管仍未导通,所以Ir开始通过寄生二极管进行续流,该过程直至td3时刻,此时开关管S2,S4的驱动信号变为高电平,开关管的内部导通电阻阻值很小,其导通压降小于寄生二极管正向压降,因此开关管与其内部的寄生二极管开始自动换流,电流开始反 - 37 -哈尔滨工业大学工学硕士学位论文 向流过开关管S2、S4,在寄生二极管的钳位作用下,开关管S2、S4实现零电压导通。 driveS1ONS3ONS2ONS4ONLmRRLm
a
SD2SD4
d1d2d3
图4-4 变换器死区波形图 根据上述模态分析可知,保证变换器零电压软开关工作的条件为在开关导通前,其内部的寄生二极管可靠导通,所以应有 tdeadtdc (4-11) 将式(4-10)代入式(4-11)即可得出开关关断电流Iroff与寄生电容coss之间的关系 Iroff2CossUDC (4-12) tdead将式(3-36)代入式(4-12)即可得到变换器零电压开关工作条件与励磁电感Lm之间的关系 LmkUotdeadTs (4-13) 2CossUDC4由式(4-13)可以看出,设计要求确定后,变换器的零电压工作条件实际由Lm确定,因此只要合理的限定励磁电感量即可实现LLC变换器全工作状态下的零电压开通。 - 38 -哈尔滨工业大学工学硕士学位论文 4.4 变换器谐振腔参数设计方法 与传统应用软开关技术的变换器不同,LLC串联谐振变换器的设计过程具有闭合性,即需要将根据初始设定计算出的参数进行校验,以检验其是否满足预设要求,同时谐振腔参数相互耦合程度较高,根据以上几章的结论,最终确定变换器谐振腔参数设计步骤如图4-5所示,下面将详细对各个设计步骤进行详细介绍。 选择工作频率频范围确定参数m确定Qmax确定Qzf确定励磁电感Lm调整开关管并联电容确定谐振电感Lr及谐振电容Cr与预设第一谐 振频率点一致?NY结束 图4-5 变换器谐振腔参数设计流程图 4.4.1变换器额定工作点选择 在对谐振腔参数进行设计时,首先应根据实际情况对变换器工作频率范围进行大致确定,相对于其他技术参数,工作频率范围的选择较为宽松,其主要受变换器体积、材料以及工艺等因素限制,在确定以上影响因素后,首先大致确定变换器工作频率范围(fmin,fmax)并初选一个第一谐振频率点f1,然后使用式 - 39 -哈尔滨工业大学工学硕士学位论文 (4-14)及式(4-15)分别求出关于第一谐振频率归一化的最大工作频率及最小工作频率 fsnminfsnmax式中fmax ——最大工作频率; fmin (4-14) f1fmax (4-15) f1fsnmax——关于第一谐振频率归一化的最大工作频率; fmin ——最小工作频率; fsnmin——关于第一谐振频率归一化的最小工作频率。 根据第三章有关变换器变压比特性的结论,变压比特性以f1为分界线,在该点左侧电路处于升压状态,右侧处于降压状态,当变换器工作于第一谐振频率点f1时,变压比恒定为1,且与负载情况无关,将变换器额定工作点设定于此,可以有效提高变换器工作性能。若将变换器工作范围全部设定在降压区域内,此时无论任何负载条件下,变换器均处于安全工作区域内,但变换器最大变压比小于1,为满足轻载工作条件,必须增大m取值,根据式(3-10),m越大,谐振电感Lr取值与励磁电感Lm取值越接近,制作变压器时,对磁集成技术的工艺要求越高,实现起来越困难。反之,若将变换器工作范围全部设定在升压区域内,此时变换器最小变压比大于1,在满载,输入电压最小的工作条件下,变换器工作点过于靠近安全分界线,降低了变换器可靠性。因此,较为合理的工作范围是,将额定工作点设于第一谐振频率处,同时整个工作范围内同时各包含一部分升压区域和一部分降压区域,最终可得,变压器变比应满足 kUDCnom (4-16) Uo式中UDCnom——额定母线电压。 在求的k值后,进而可以得到变换器最大变压比及最小变压比 MmaxkMmink式中UDCmin——最小母线电压; UDCmax——最大母线电压。 Uo (4-17) UDCminUo (4-18) UDCmax - 40 -哈尔滨工业大学工学硕士学位论文 4.4.2确定参数m 如前所述,变换器降压特性与参数m有着极大的关系,为了保证在轻载,母线电压最大的条件下,变换器可以正常工作,只需使变换器的谐振腔增益在轻载的极限情况下,即空载状态,在最大工作频率处的变压值不大于最小变比Mmin即可满足设计要求,对式(3-14)中的变换器空载增益公式进行整理,并代入最低变压Mmin及最大归一化频率fsnmax,最终可以求出满足设计要求的m的计算公式 2fsnmax1Mmin (4-19) m2fsnmax1Mmin根据式(4-11),对于给定的设计要求,可以通过调整电路工作频率范围或改变第一谐振频率点来调整m的取值,即改变fsnmax的取值。 4.4.3确定励磁电感量Lm 根据以上几章中得出的结论,励磁电感Lm的取值会对变换器的效率,可靠性等方面均带来较大的影响,但为保证变换器可以安全工作,这里将通过品质因数来确定励磁电感量。 在确定品质因数之前,首先应求出变换器安全工作范围内的最大品质因数Qmax,将上一步求出的m及Mmax代入式(4-2)得到该值。为保证即使在最坏工作情况下,变换器的工作点仍能保持在感性工作区域内,应使变换器最大工作品质因数Qzf永远小于Qmax,将Qzf代入式(4-1),整理后求出变换器的励磁电感量 LmQzfR1 (4-20) 2mf1根据对变换器负载切换暂态过程的分析后可知,在切换过程中,等效负载暂态值Rz1变大,此时变换器实际工作品质因数有最大值Qzf,将式(4-9)代入式(3-8)中可以求出Rz1 Rz182k2Rz82k2Uo4ts (4-21) 5(Q1Q2)为提高可靠性同时保证励磁电感值不致过小以达到兼顾效率的目的,Qzf取值通常为(90%~95%)Qmax,将Rz1及Qzf代入式(4-1),整理得 LmQzfRz1Qmax82Uo4tsk (4-22) 2mf12mf125(Q1Q2)式中 ——比例系数,=0.9-0.95。 - 41 -哈尔滨工业大学工学硕士学位论文 采取以上设计方式后,即可保证变换器在恶劣的工作条件下仍能安全工作,但由于该设计算法得到的变换器的励磁电感相对较小,因此,开关管的导通损耗于关断损耗均会有一定增大,同时增大的关断电流还会增大开关管的关断尖峰,使开关管在工作过程中被击穿的风险大幅增加。为了解决这一问题,同时对效率进行一定的补偿,在设计过程中,每只开关管上均被并联了缓冲电容CH,该种方式简单有效的减小了开关管两端的电压尖峰以及关断损耗,对提高变换器工作效率起到了一定的作用。为满足变换器零电压开通条件通,并联的缓冲电容应满足 CH式中r ——比例系数。 kUortdeadTsCoss (4-23) 2LmUDC4在式(4-23)中,为保证开关管的寄生二极管能可靠导通,实现开关管的零电压开通,r通常取0.5~0.7。 4.4.4设计参数校验 在m、Q以及Lm确定后即可对谐振元件参数Lr、Cr进行计算 LrmLm (4-24) CrLr (4-25) 22QRZ1由于LLC变换器谐振参数设计具有闭合特性,因此在计算出全部参数后,应将式(4-24)及式(4-25)的结果代入式(4-26)中,求出该参数下的第一谐振频率点f1',并与预设第一谐振频率点f1进行对比,若两结果相差较多则应返回第一步重新计算。 f1'1 (4-26) 2CrLr 4.5 本章小结 在前几章的基础上,本章首先对变换器负载切换过程进行了讨论,并给出了对等效负载暂态值的计算方法,使用该等效负载的计算值对品质因数Q进行计算,将该Q值作为变换器参数设计过程中的重要参量,以提高变换器的可靠性,接着对变换器的零电压开关工作过程进行了讨论同时给出了软开关的实现条件,最终,根据以上所有对LLC变换器分析所得出的结论,本章提出了较为 - 42 -哈尔滨工业大学工学硕士学位论文 合理的谐振腔参数设计过程,使用该设计方法可以有效提高变换器可靠性并且还可对效率实现一定的兼顾。 - 43 -哈尔滨工业大学工学硕士学位论文 第5章 硬件电路设计及实验结果 5.1 引言 经过对LLC变换器工作特性与谐振腔参数的关系进行讨论后,本文在上一章提出了一种较为合理的谐振腔设计方法。根据设计要求,在使用该设计方式算出谐振腔参数后,本章首先以谐振腔参数为依据对变换器主电路及控制电路进行设计,而后使用saber进行仿真并根据以上设计参数制作了实验原型机对设计方法的合理性进行了验证。 5.2变换器电路参数计算 变换器的主要技术指标如下: (1) 输入:(200~240V)/50Hz(额定电压220V/50Hz); (2) 输出:48V/15A; (3) 开关频率范围:100kHz~200kHz; (4) 额定输出功率:720W 根据上一小节的设计步骤,经初步计算得出的变换器谐振腔参数为Lm=100uH,Lr=42uH,Cr=26nF,变压器变比k=5.18,开关管并联缓冲电容CH=500pF。 5.2.1 主电路参数选取 5.2.1.1 功率开关管参数计算 在全桥变换器中,开关管所承受的最大电压为母线电压,本设计中前级整流部分采用整流桥并联滤波电容的设计方案,最高交流输入电压240V,在空载情况下,此时经整流后的直流母线电压应为 UDCmax2Uinmax240V1.4336V (5-1) 考虑到开关管关断时存在一定的电压尖峰,因此在选择开关管时,其耐压值应至少保留1.5倍的裕量。在选择开关管的电流等级时,应按流过开关的最大电流设计以减小开关管的导通损耗,由于谐振电流近似为正弦波,所以最大电流值与谐振电流的幅值相等,将计算出的谐振腔参数带入式(3-41)即可算出谐振电流有效值 - 44 -哈尔滨工业大学工学硕士学位论文 Irrms485.1843.22424.32A (5-2) 4232(110)(15210)425.183.2根据式(5-2)可以求出流过开关管的最大电流为6.11A,最终选择采用SPP20N60C3作为主开关管,其最大耐压值为650V,导通电阻0.19,允许最大电流值为20A。 5.2.1.2 副端整流电路参数选取 对于全桥拓扑结构,副端整流电路有多种拓扑结构可供选择,由于全波整流电路中只含有两个整流二极管,相对于全桥整流电路,二极管的导通损耗减半,因此为提高效率,副端整流电路采用全波整流电路。 在全波正路电路中,变压器副端存在两个串联关系匝数相同的绕组,其原理图如图5-1a)所示,图中,Ls为漏感,Lm为漏感。在实际绕制变压器时,副端采用中心抽头结构对原理图结构进行实现。LLC变换器中的谐振腔由谐振电感,谐振电容以及励磁电感组成,其中谐振电感与励磁电感的电路结构与变压器中的漏感与励磁电感之间的结构相同,因此可以使用磁集成技术,利用变压器原端的漏感实现谐振电感的功能,将变压器与谐振电感集成在一起,为了提高漏感量,采用分槽挡板对骨架进行分槽,并将原副端分别绕制在不同的槽区内[37,38,39],其结构示意图如图5-1(b)所示。在设计变压器时,首先采用AP法确定变压器磁芯的型号,AP值公式如式(5-3)所示 PinPoAPD (5-3) kfBkekofsJ式中Pin—— 变压器输入功率; kf —— 波形系数,对于方波其值取4; B—— 磁密变化量; ke —— 磁芯面积利用率; ko —— 窗口面积利用率; J —— 电流密度; D —— 占空比。 由于变换器工作频率范围相对较高,因此变压器磁芯铁损较大,为解决该问题,通常大幅减小工作磁感应强度的峰值,使其远小于磁芯的饱和磁密,本设计中磁密变化量取值为0.12T,由于全桥变换器工作时,磁芯双向励磁,变压由于变压器工作于自冷状态,因此电流密度J取3A/mm2。器峰值磁密值为0.06T。此外因为变压器使用分槽方式绕制,窗口利用率相对更低,因此这里ko取值0.05。将所有参数代入式(5-3)求出AP值,最终考虑一定的裕量,选择铁氧体磁芯EE65,其AP=14.44cm4,Ae=3.8cm2,Aw=3.8cm2。根据所确定的峰值磁密计 - 45 -哈尔滨工业大学工学硕士学位论文 算原边匝数 NPUDC_maxDTSBAeNp22 (5-4) 负端匝数则可根据变压器变比k进行确定 k最终负端匝数取值为4。在制作变压器时,还应注意,负端绕组应使用并Ns4.247 (5-5) 绕方式以保证漏感的一致性,否则原端励磁电流会出现偏移现象,造成变压器偏磁。 1np2LsLm气隙分槽器nsns5 34a) 原理图 b) 结构图 图5-1 变压器结构原理图 由于变压器采用中心抽头式设计,输出二极管的所承受的最大反向电压UD为两倍的输出电压,其值为 UD2Uo248V96V (5-6) 考虑到由于变压器漏感所引起的电压尖峰,在选择耐压值为150V以上的二极管,在一个开关周期内,整流二极管上电流平均值即为输出电流平均值,但电路处于PFM工作状态,并保持恒定不变50%的占空比,因此二极管实际导通时间为半个开关周期,其电流最大值IDmax为 I15AIDmaxo30A (5-7) D0.5最终选择副端整流二极管为MUR3020PT,其最大耐压值为200V,最大正向电流为60A,最大平均电流为30A。 5.2.2 控制电路方案选择 在本设计中,采用ST公司生产的LLC变换器专用控制芯片L6599,占空比恒定50% ,死区时间固定,恒定为0.3us,最高工作频率为500kHz,具有间歇工作模式以保证电路在空载运行条件下的效率,同时具备完善的过流保护功 - 46 -哈尔滨工业大学工学硕士学位论文 能,方案中控制电路设计原理图如图5-2所示。 R101KVin+R12C153.3uF15KR13390KC170.33uFR15390K10KR191KFBR17C230.01uFR214K10KR2020KR1611KR18R221KC22R14300K12C160.1nF345678VCCU2CSSDELAYCFRFminSTBYISENLINEDISL6599VBOOTHVGOUTN.C.VccLVGGNDPFC_STOP161514131211109C190.1uFC1850V22uFdrive twodrive oneR11500K1uF 图5-2 控制电路原理图 5.2.2.1 振荡电路参数计算 根据设计要求,使用第四章中所述方法对谐振腔参数进行计算后,最终选定变换器实际工作频率范围为,为保证空载状态下的效率,当变换器工作频率超过最大值时,变换器进入间歇工作模式,因此应使用式(5-8)与式(5-9)对振荡电路进行计算以实现该功能 RfminR17R201 (5-8) 3C16fmin3RRfmaxR16fmin (5-9) 8fmax1fmin根据计算结果,最终选择振荡电容C16为100pF,振荡电阻R16为21k,R17为10k,R20为20k。 5.2.2.2 驱动电路参数选取 LLC全桥变换器在工作时,采用变频控制,开关管以恒定50%的占空比对臂互补导通,L6599芯片仅有一组驱动器,无法直接应用于全桥拓扑结构,因此,将控制芯片的两路互补驱动信号分别作为控制信号,而后通过两组自举驱动电路分别控制两组对臂开关管的导通与关断。 - 47 -哈尔滨工业大学工学硕士学位论文 自举驱动电路以IR2110驱动芯片为核心,该芯片是一种高压、高速双通道集成驱动芯片,多用于母线电压在600V以内,驱动MOSFET开关的场合,其内部已集成大部分自举驱动电路,只需外接阻断二极管及自举电容即可正常工作,由于全桥拓扑结构中两组桥臂工作过程具有对称性,因此采用两组相同结构的驱动电路,每一组驱动全桥中的一个桥臂,其电路原理图如图5-4所示。在选择自举电容时应保证电容值足够大,以防止驱动电路在工作过程中电容电压值跌落过多使致开关管无法正常导通,根据变换器最低工作频率,自举电容值选择为22uF,考虑到变换器最大母线电压,选择FR107作为阻断二极管。 VCCC2050V22uF9101112138D7U3VDDHINSDLINVSSNCIR2110-1HOVBVSNCVCCCOMLO76514321Q2 driveVCCC210.1uFdrive twodrive oneC44C24FR10750V1uF22uFQ2 GC2550V22uFQ3 driveC260.1uF 图5-4 驱动电路原理图 5.2.2.3 反馈电路设计 为满足精度的要求并实现输出端与原端的隔离,变换器采用TL431与PC871的组成反馈电路[40],其原理图如图5-5所示。L6599芯片的工作频率与流过最小频率设定引脚的电流成正比,根据LLC变换器变压特性,变换器变压比与工作频率成反比,因此在控制环路中,LLC变换器自身相当于反相器,在设计补偿环节时,需要正反馈环节,由于L6599的反馈引脚内部以集成了一个高精度电压源,所以只需将PC817的正输入端通过Rfmin与最小频率设定引脚,直接对该引脚的的电流进行控制即可。在设计输出端电路时,应注意以下两点,为减小损耗,在避免TL431基准端的分流作用对采样电路影响的条件下,输出电压采样电阻应足够大,其次,应调整与PC817串联的电阻值,防止光耦进入非线性工作区域以保证控制电路的精确度。 - 48 -哈尔滨工业大学工学硕士学位论文 Uo senseR60R23C2812PC817R29C29R28R24FBR2643U4U5TL431R31R33 图5-5 反馈电路原理图 5.2.3 变换器启动过程及启动电路参数计算 在LLC变换器启动瞬间,由于输出端的电容初始电压为零,电路在上电瞬间会受到极大的电流冲击,如不采取保护措施,该电流冲击会击穿开关管,最终烧毁电路,采用软启动方式可以较好的解决该问题,即保证输出电压在启动开始时的一段时间内缓慢上升至预定值以减小电流冲击。传统的开关电源采用脉宽调制(PWM)的方式控制输出电压,因此在启动时,通过控制占空比由零缓慢增加预设值实现软启动,但由于LLC串联谐振变换器采用脉冲频率调制方式(PFM),以上所述方法已不再适用,根据对LLC变压特性,变换器工作频率越高变压比越低,因此在启动时使LLC变换器工作频率由某一较高水平缓慢下降至正常工作频率区域即可实现变换器的软启动功能。 为找出合理的合理的启动频率区间,首先应对变换器启动过程进行暂态分析。在启动瞬间,输出电压还未建立,其值为零,在输出电容的作用下,负载端处于短路状态,反射至变压器原端时,励磁电感也同时被短路,因此在上电瞬间,变换器的等效电路实际是由Lr与Cr组成的串联谐振电路,根据以上论述,可以得到启动过程中的暂态原理图如图5-3所示。图中,Ui是由变换器输入与开关网络共同等效而来的方波激励源,该激励源的工作频率与开关频率相同,电压值在正负母线电压之间变化,受L6599控制,其占空比恒定为50%。 - 49 -哈尔滨工业大学工学硕士学位论文 谐振电路在开始工作时,谐振元件的电压、电流初值为零,直至电路中的谐振工作状态完全建立之间,电路中的电压与电流均处于较高水平,考虑极限情况,在电路上电工作的第一个工作周期内,电路所受冲击最大,根据激励源输出的情况可将该工作周期分为两个暂态阶段。 图5-3 启动过程暂态原理图 阶段1:此时激励源输出电压为正母线电压UDC,根据图5-3中电路列暂态方程可得 d2Ucr(t)LrCrUcr(t)UDC (5-10) dt式中 Ucr(t)—谐振电容电压。 将初值条件Ucr(0)=0,ir(0)=0代入,最终可以求得 Ucr(t)UDCUDCcoswrt (5-11) dUcr(t)UDCwrsinwrt (5-12) dt2式中 wr—谐振电路角频率, wr2f1。 LrCrir(t)Cr在第一阶段结束时,谐振电流值与谐振电容电压值应满足 TwTUcr(s)UDCUDCcosrs (5-13) 22TwTir(s)UDCwrsinrs (5-14) 22阶段2:此阶段内,激励源输出电压变为-UDC,对谐振电路列暂态方程可得 d2Ucr(t)LrCrUcr(t)UDC (5-15) dt第二阶段开始时,电路中的电压电流应与第一阶段结束时的参数形同,因此,第二阶段电路中谐振电容电压与谐振电流的初值应与第一阶段的终值相同,将式(5-13)以及式(5-14)作为初值条件代入,最终可以求得 - 50 -哈尔滨工业大学工学硕士学位论文 Ucr(t)2UDCsinwrTsTsinwrt2UDCcoswrsUDCcoswrtUDC (5-16) 22wrTswTcoswrt2UDCcosrsUDCwrsinwrt (5-17) 22ir(t)2UDCwrsin根据式(5-18)可以求出变换器在启动后第一个工作周期结束后的谐振电流值 ir(Ts)2UDCwrsinwrTswrTscos1 (5-18) 22根据第二章有关变换器安全工作条件的结论,若要保证变换器永远处于可靠工作状态,应使谐振腔的输入阻抗特性一直处于感性状态,对于图5-3中启动过程等效电路原理图来说,谐振腔实际由Lr,Cr组成,根据谐振电路特性,在感性输入阻抗特性下,此时谐振电流的相位应落后于激励源电压,当第二个工作周期开始时,谐振腔的输入电压变为正的母线电压,为保证谐振电流在电路启动过程中仍满足其与激励源电压的相位限制应有 ir(Ts)2UDCwrsinwrTswrTscos10 (5-19) 22根据式(5-19)可以得到与其等价的关系式 0wrTs (5-20) 2fsf1 (5-21) 最终可以得出保证变换器安全启动的工作频率区间 根据式(5-21)所得结果,只需使启动时的工作频率高于第一谐振频率即可变保证换器一直处于安全工作区域,由于L6599最大工作频率为500kHz,考虑到驱动电路的可靠性问题,这里将启动频率设为300kHz,最后根据式(5-22)及式(5-23)求出启动电路参数 R12Rfminfstrat1fmin15k (5-22) 3103C170.33uF (5-23) R125.3仿真结果 为验证谐振腔参数设计方法的合理性,使用saber对变换器进行闭环仿真。根据第三章对变换器软开关条件的分析,当母线电压最高时,在控制器的作用 - 51 -哈尔滨工业大学工学硕士学位论文 下,变换器工作频率增大,由于输出电压恒定不变,此时,励磁峰值电流最小,软开关实现条件最为苛刻,图5-6即为最高输入电压条件下,变换器开关电压与驱动信号之间的关系图,图中,在谐振电流的作用下,开关管并联电容的电压在驱动信号的死区时间内由母线电压下降为零,保证了开关管寄生二极管的可靠导通,实现了开关的零电压开通。 图5-6 开关电压与驱动信号关系图 如第四章所述,若在设计LLC变换器,为追求效率,使励磁电感量取值过高,则变换器在在切换过程中会出现暂态容性开通现象。使用传统计算方式,根据设计要求,设计谐振腔参数并进行仿真,图5-7为变换器由空载向满载切换过程中,流过开关管的电流与电压的关系图,图中,由于切换过程中暂态负载瞬时值较大,变换器出现暂态容性开通现象,开关电流,电压均出现很大的尖峰,该冲击对电路造成极大威胁。 图5-7 流过开关管的电流与电压波形图 使用本文介绍的设计方法对谐振腔参数进行设计后,负载由空载向满载状 - 52 -哈尔滨工业大学工学硕士学位论文 态切换时,输出电压波形如图5-8所示,开关管电流与电压的波形如图5-9所示,在与上图相同的工作状态下,变换器未出现暂态容性开关现象,因此本文所介绍的设计方法较好的解决了暂态容性开通问题。 图5-8 负载切换时输出电压波形图 图5-9 开关电压与开关电流关系图 5.4实验结果 变换器轻载波形如图5-10所示,在最大输入电压空载的条件下,变换器实现零电压开关条件最苛刻,图5-10a)中,CH1通道为开关管电压,CH2通道为该开关的驱动信号,从图中可以看出,在开关管导通信号开始前的,开关两端的电压已降为0,变换器较好的实现了零电压开通,此时图5-10c)中的开关开通时的开关管电压波形无任何电压尖峰,但LLC变换器并未实现零电压关断,图5-10a)中,在开关关断时,开关管电压仍存在一定的电压尖峰,观察图5-10b)可知,电压尖峰值约为50V,因此在本文所介绍的设计方法中,为开关管增加 - 53 -哈尔滨工业大学工学硕士学位论文 缓冲电容,对减小开关管电压关断尖峰及开关管关断损耗具有实际意义。 图5-10d)中为经过整流电路后采样所得到的谐振电流波形,由于变换器工作为轻载状态下,谐振电流较小,其波形与励磁电流波形相近,近似为三角波。 a) 开关管电压与驱动信号波形 b) 开关管关断波形 c) 开关管开通电压波形 d) 谐振电流波形 图5-10 轻载波形图 为提高变换器在轻载状态下的效率,当变换器工作频率高于一定值时,变 换器进入间歇工作模式[41,42],该工作模式下,开关管驱动波形如图5-11所示。 图5-11 间歇工作模式驱动波形 - 54 -哈尔滨工业大学工学硕士学位论文 图5-12为变换器在低输入电压的条件下,满载工作情况的波形图,观察图5-12a)、5-12b)、5-12c)可知,变换器较好的实现了开关管的零电压开通,同时变换器在关断时,开关管两端的尖峰电压与空载状态时相差不多,因此,位开关管额外并联的钳位电容减小开关电压尖峰起到了一定的作用。 a) 开关管电压波形 b) 开关管关断电压波形 c) 开关管开通电压波形 d) 谐振电流与驱动信号波形 图5-12 重载波形图 图5-12d)为负载切换过程中,谐振电流整流后所得到的采样信号,可以看到,即使输出电压较低,在负载切换时,谐振电流仍滞后驱动信号一定相位,验证了本文所述设计方法的合理性。 图5-13为变换器在额定输入条件下的效率曲线图,可以看到,LLC全桥变换器在较大的负载变化范围内均能保持较高的工作效率,同时由于变换器在轻载状态下工作于间歇工作模式,因此轻载条件下的工作效率并未大幅下降的现象,因此本文所介绍的设计方法在提高变换器可靠性的同时也对效率实现了较 - 55 -哈尔滨工业大学工学硕士学位论文 好的兼顾。 图5-13 效率曲线图 5.5本章小结 使用本文所述设计方法,本章设计了一台输出为48V/15A实验样机,并对硬件电路的设计过程进行了详细的介绍,最终使用saber变换器进行仿真并制作了一台样机验证了本文所述的设计方法。 - 56 -哈尔滨工业大学工学硕士学位论文 结 论 LLC全桥谐振变换器具有高效、低电磁辐射、低电压电流应力等诸多技术优势,多适用于大功率场合。但LLC变换器工作特性及可靠性易受负载条件、变化器工作频率等因素影响,若谐振腔参数设计不合理,变换器在负载切换过程中易出现暂态容性开关状态,为变换器带来安全隐患,论文提出了一套合理的设计方法,在兼顾效率的同时,提高变换器的可靠性,本文主要内容及结论如下: (1)根据全桥LLC谐振变换器的结构特点,得到简化原理电路,使用基波近似法(FHA)对该电路进行建模,根据该模型,分别对变换器谐振腔参数与变换器变压特性、效率以及安全工作条件之间的关系进行研究后发现,谐振腔中的励磁电感的取值对变换器的效率及可靠性均有较大影响,而谐振电感值与励磁电感值的比值对变换器实际的工作频率范围影响较深。 (2)根据变换器负载切换工作过程,得到输出端等效电路,对该电路进行暂态分析后推导出负载切换过程中变换器等效输出负载值,以该等效值作为设计参考量,综合考虑变换器零电压开通条件,谐振腔参数与变换器工作特性之间的关系等因素,总结出一套LLC全桥变换器谐振腔参数设计方法,达到提高变换器可靠性同时兼顾效率的目的。 (3)对全桥LLC变换器的启动过程进行讨论,得到变换器等效启动电路, 对该电路进行暂态分析后得出全桥LLC谐振变换器安全启动频率区间为fs>f1。(4)依据所提出的设计方法,设计一台输出为48V/15A的LLC全桥变换器,最终使用saber进行仿真,并制作了一台试验样机,验证了理论的可行性。 由于LLC变换器固有工作特性,副端整流二极管在全范围负载条件下均具有零电流软开关模式,开关损耗较小,因此设计高效可靠的同步整流电路,将其应用于LLC变换器中,对提高变换器效率有很大帮助[44],有待进一步研究。另外, LLC变换器负载突变时的详细工作过程有待深入分析,以找出更加合理的等效负载值计算方法,进一步对变换器谐振腔参数进行优化。 - 57 -哈尔滨工业大学工学硕士学位论文 参考文献 [1] 杨益平.谐振DC_DC变换器的研究[D]. 浙江:浙江大学硕士学位论文. 2005:23–25 [2] 柴正勇, 胡金燕, 张四胜. 移相控制ZVS PWM DC/DC全桥变换器[J]. 电气传动自动化, 2009, (02) :39–40 [3] 张欣, 陈武, 阮新波. 一种辅助电流可控的移相全桥零电压开关PWM变换器[J]. 电工技术学报. 2010, 25(3):81–88 [4] Nerone L. R. A complementary Class D converter[C], IEEE Industry Applications Conference, Oct. 12-15, 1998, vol. 3, pp. 2052–2059. [5] 顾亦磊, 吕征宇. 开关频率为IMHz的多谐振变换器[J]. 电源技术应用. 2006,8(2):20–24 [6] 闫子波. 基于LLC的半桥零电压开关谐振变换器[J]. 电子技术应用. 2005, 9:68–71 [7] 陈亮. 不对称半桥变换器研究[D]. 武汉: 华中科技大学硕士学位论文, 2007:40–49 [8] 陈云国. 改进型不对称半桥变换器的研究[D]. 南京:南京航空航天大学硕士学位论文. 2008:18–23 [9] 黄华芳. 一种新颖的不对称半桥式准谐振变换器[J]. 电力电子技术. 2007, 41(11):18–19 [10] Lin Bor Ren, Chianq HuannKenq, Tseng Chao-Hsien, et.al. Analysis and Implementation of an Asymmetrical Half-bridge Coverter[C]. Proceeding of the International Conference on Power Electronics and Drive System. Kuala Lumpur, 2005:407–412 [11] Robert L. Steigerwald. A Comparison of Half-bridge Resonant Coverter Topologies[J]. IEEE Transactions on Power Electronics. Vol.3, No.2, April 1988:174–182 [12] Zhang Y. J, Xu D. H, Chen M. LLC Resonant Coverter for 48V to 0.9V VRM[J]. IEEE PESC Proceedings, Aachen, Germany, 2004:1848–1854 [13] Hsieh G. C., Tsai C. Y., Hsieh S. H. Design considerations for LLC series-resonant converter in two-resonant regions[C], IEEE PESC, Jul. 2007, pp. 731–736. [14] 方宇, 徐德鸿, 张艳军. 高功率密度LLC谐振变换器的研究[J]. 电力电子技术. 2007, 41(8):16–18 [15] Xie X., Zhang J., Zhao C., ect. Analysis and optimization of LLC resonant - 58 -哈尔滨工业大学工学硕士学位论文 converter with a novel over-current protection circuit[J], IEEE Trans. Power Electron. vol. 22, no. 2, pp. 435–443.Mar. 2007. [16] Ivensky G., Bronstein S., Ben-Yaakov S. Approximate analysis of the resonant LCL DC-DC converter[J], IEEE Electrical and Electronics Engineers in Israel, 2004. Proceedings, pp. 44–47. [17] Groves J. O. Small-Signal Analysis Using Harmonic Balance Methods[C]. Proc. IEEE PESC, 1991. 74–79. [18] Duerbaum.T. First Harmonic Approximation Including Design Constraints[C]. Telecommunications Energy Conference. 1998:321–328 [19] Lazar J. F. R. Martinelli. Steady-state Analysis of the LLC Series Resonant Converter[C]. 2001 16th Annual Meeting of Applied Power Electronics Conference Vol 2:728–735 [20] Yang Eric X.. Extended Describing Function Method for Small-Signal Modeling of Resonant and Multi-Resonant Converters[J]. Dissertation, Virginia Tech, Blacksburg, VA, February 1994. [21] Fang. Y, Xu D. H, Zhang Y. J, ect. Design of High Power Density LLC Resonant Coverter with Extra Wide Iput Range[J]. IEEE,1–4224–0714–1, 2007:796–798 [22] Jain P.K, Kang W, Soin H, etc. Analysis and Design Considerations of a Load and Line Independent Zero Voltage Switching Full Bridge DC/DC Coverter Topology[J]. IEEE Trans. on Power Electron. 2002, 17(5):649–657 Fred C Lee,Alpha J Zhang,et al. LLC Resonant Converter for Front [23] Yang Bo,End DC/DC Conversion[C]. In Proc. IEEE APEC’02. 2004:1108–1112 [24] Mao ye,.Ming Xu,Lee Fred C. 1MHz Mutli-Resonnat Push-Pull 48V VRM[C]. IEEE Applied power Electronies Conference and Exposition(APEC’03),2003 [25] Abdel-Rahman O. Abu-Qahouq J. A., Huang L., ect. Analysis and design of voltage regulator with adaptive FET modulation scheme and improved efficiency[J], IEEE Transactions on Power Electronics, vol. 23, no. 2, pp. 896-906, Mar. 2008. [26] Kazimierczuk M. K., Wu C. Frequency controlled series resonant converter with synchronous rectifier[J], IEEE Trans. Aerosp. Electron. Syst. vol. 33, no. 3, pp. 939–948, Jul. 1997 [27] Rodriguez F., Ribas J., Alonso J. M., Analysis and design of the LCC parallel series inverter with resonant current control as HPS lamp ballast[C], IEEE Power Electronics Specialists Conference, June 17–21 2001, vol. 2, pp. 980–985 [28] Azcondo F. J., Zane R., Branas C. Design of resonant inverters for optimal efficiency over lamp life in electronic ballast with phase control[C], IEEE - 59 -哈尔滨工业大学工学硕士学位论文 Applied Power Electronics Conference and Exposition ,March 6-10, 2005, vol. 2, pp. 1053–1059. [29] Huang D., Fu D., Lee F. C. High switching frequency, high efficiency, CLL resonant converter with synchronous rectifier[C], IEEE,ECCE, 2009, pp. 804–809. [30] 朱立泓. LLC谐振变换器的设计[D]. 浙江:浙江大学硕士学位论文. 2001:41–48 [31] 廖佳文. LLC变流器优化设计及其同步整流技术研究[D]. 浙江:浙江大学硕士学位论文. 2011:16–20 [32] Kuebrich D., Duerbaum T., Bucher A. Investigation of Turn-Off Behaviour under the Assumption of Linear Capacitances[C], PCIM Conference, Nuremberg, Germany, May/June 2006. [33] Choi W. S. , Young S. M. Improving system reliability using FRFET in LLC resonant converters[C], IEEE 2008 Power Electronic Specialist Conference, 2008, pp. 2346–2351. [34] Yi K. H., Moon G. W. Novel two-phase interleaved LLC seriesresonant converter using a phase of the resonant capacitor[J], IEEE Transactions on Industrial Electronics, vol. 56, no. 5, pp. 1815–1819,May 2009. [35] Lee F. C., Wang S., P. Wang Kong, C.,ect. Power architecture design with improved system efficiency, EMI and power density[C], IEEE PESC, 2008, pp. 4131–4137. [36] Ferreira J. A., Roux J. A. A series resonant converter for arc-striking applications[J], IEEE Trans. Ind. Electron., vol. 45, no. 4, pp. 585–592, Aug. 1998. [37] Wituski A. F. Introduction to modeling of transformers and coupled inductors[J], IEEE Trans. Power Electron., vol. 10, no. 3, pp. 349–357, May 1995. [38] Cuk Slobodan. New Magnetic Structures for Switching Converters[J]. IEEE Transactions on Magnetics, 1983,19(2):75–83. [39] Reinert J., Brockmeyer A., R. De Doncker W. A. Calculation of Losses in Ferro-and Ferrimagnetic Matericals Based on the Modified Steinmetz Equation[J], IEEE Trans. Industry Applications, vol. 37, pp. 1055–1061, 2001. [40] Lee J. P., Min B. D., Kim T. J., ect. A novel topology for photovoltaic series connected dc/dc converter with high efficiency under wide load range[C], Power Electronics Specialist Conference, 2007, pp. 152–155. [41] Jang Y. T., Jovanovic M. M., DilLman D. L. Light-load efficiency optimization method[C], Applied Power Electronics Conference and Exposition, 2009, pp. 1138–1144. - 60 -哈尔滨工业大学工学硕士学位论文 [42] Wang B., Xin X., Wu S., ect. Analysis and implementation of LLC burst mode for light load efficiency improvement[C], 24th Annu. IEEE APEC, 2009, pp. 58–64. [43] Fu D., Lu B., Lee F. C. 1 MHz high efficiency LLC resonantconverters with synchronous rectifier[C], IEEE Power Electron. Spec. Conf. 2007, pp. 2404–2410. - 61 -哈尔滨工业大学工学硕士学位论文 攻读硕士学位期间发表的论文及其它成果 发表的学术论文 [1] 黄贺,孟涛,贲洪奇.具有PFC功能的90W开关电源的设计与实验研究[C]. 中国电源学会第十九届学术年会,上海,2011:129 - 62 -哈尔滨工业大学工学硕士学位论文 哈尔滨工业大学学位论文原创性声明及使用授权说明 学位论文原创性声明 本人郑重声明:此处所提交的学位论文《全桥LLC谐振变换器研究》,是本人在导师指导下,在哈尔滨工业大学攻读学位期间独立进行研究工作所取得的成果。据本人所知,论文中除已注明部分外不包含他人已发表或撰写过的研究成果。对本文的研究工作做出重要贡献的个人和集体,均已在文中以明确方式注明。本声明的法律结果将完全由本人承担。 作者签名: 日期: 年 月 日 学位论文使用授权说明 本人完全了解哈尔滨工业大学关于保存、使用学位论文的规定,即: (1)已获学位的研究生必须按学校规定提交学位论文;(2)学校可以采用影印、缩印或其他复制手段保存研究生上交的学位论文;(3)为教学和科研目的,学校可以将学位论文作为资料在图书馆及校园网上提供目录检索与阅览服务;(4)根据相关要求,向国家图书馆报送学位论文。 保密论文在解密后遵守此规定。 本人保证遵守上述规定。 作者签名: 日期: 年 月 日 导师签名: 日期: 年 月 日 - 63 -哈尔滨工业大学工学硕士学位论文 致 谢 在论文即将完成之际,回首两年的学习生涯,有太多的不舍与回忆,在此,我要衷心感谢所有曾给予我关心、支持、帮助和爱护的人们。 首先要感谢我的导师贲洪奇教授,从进入实验室到研究生毕业,三年来,贲老师在学习和生活上给予了我无微不至的关怀和帮助。贲老师渊博的知识是我在专业领域的追寻目标;严谨求实的治学态度是我将来从事科研工作的职业标杆;高尚的品格、正直的为人更是我处世的学习榜样。老师给予我的帮助让我的专业水平提高显著,从老师身上学到的优秀品质将使我受益终生。 感谢博士师兄王大庆、硕士师兄刘青移、苏瑞涛、宋坚锋给予我的无私帮助。感谢实验室同学苗振宇、关通、刘艳在学习和生活中给予我的帮助和启发,两年来与他们共同学习、生活,彼此获得了珍贵的友谊。感谢硕士师弟李龙,师妹孙莹莹,以及小师妹朱良梅,他们为论文的完成给予了很大的支持。 衷心感谢在百忙之中抽出时间审阅本论文的专家老师,感谢答辩委员会的各位老师和专家们对我的论文提出的宝贵建议。 最后感谢我的父母和亲人,我的每一点进步都饱含着他们的支持,漫漫求学路上我走过的每一步无不凝聚着他们的心血和汗水,此生有你们是我最大的幸福,愿你们永远健康快乐。 - 64 -全桥 LLC 谐振变换器研究
作者:
学位授予单位:
黄贺
哈尔滨工业大学
本文链接:http://d.g.wanfangdata.com.cn/Thesis_D242142.aspx