在新课程理念下,数学教师的职责在于向学生提供从事数学教学活动的机会,在活动中激发学生的学习潜能,引导学生积极从事自己探索、合作交流与实践创新。
一、数与代数领域
在新的课程理念下,在数与代数领域进行初中数学创新教学设计,要关注如下几个方面的变化和发展:
1.突出从实际问题情境中抽象出代数模型的过程
初中生的学习对象已由具体的数发展为抽象的数学符号,他们将研究刻画现实世界数量关系的方程、不等式和函数。内容的呈现可以采用 “问题情境———建立模型———求解与解释———应用与拓展———回顾与反思”的方式,让学生在分析问题中获得数学概念以及解决问题的方法、技能和科学态度,而不是直接呈现解决问题的算法与结果。例如,在引入一元二次方程内容时,可以采用类似下面这样具有实际背景的例子,组织学生进行讨论,获得 “一元二次方程”的模型。
[例1] 一个长为10m的梯子斜靠在墙上,梯子的顶端距地面的垂直距离为8m。梯子的顶端下滑1m 后,底端将水平滑动1m吗? 2.对于重要的公式、法则和规律,教学设计的素材呈现方式应有利于学生主动探索和交流
初中阶段出现的运算公式、法则比较多,它们的引出都应在尝试、猜测、推导之后加以总结,概括。教学设计要为学生提供自主探索的机会。 教学设计过程还应重视呈现那些针对数学规律进行探索,并用代数式表示规律的内容,这样,可以使学生在自主探索的过程中更好地理解代数式的意义和作用,并促进学生数学思维能力的发展。 3.代数式、方程、函数内容的编排适宜螺旋式推进
根据学生心理发展的特点和认知结构的变化,初中阶段的代数式、方程、函数内容可以在三年的教学设计中交叉编排,体现不断深化的过程,而不宜过于集中。具体到一节课的教学设计,代数式、方程、函数的内容设计要注意承上启下,多次反复,要注意过程性的和前后联系的内容的呈现。这样做有利于学生不断加深对字母表示数、方程思想和函数思想的认识,使学生逐步学会用数学的符号和语言刻画简单的具体问题,发展建模能力和应用意识。
4.发展学生的估算意识,重视使用计算器
初中阶段应加强近似计算的有关内容,使学生知道什么时候需要近似计算以及近似的程度。例如,在现实生活中,无理数常常用它的近似值来表示和进行计算,因此,当教学设计中涉及实际问题的解是无理数时,应根据实际需要选择使用近似值来作出解答。 5.向学生介绍有关的数学背景知识
例如,正负数、无理数的历史;一些重要符号的起源与演变;与方程及其解法有关的材料;函数概念的起源、发展与演变。 二、空间与图形领域
1.素材的选取宜注意选择那些具有现实背景的、有趣的、富有挑战性的,同时有丰富的数学内涵的内容
[例4] 某汽车的车牌被前面的物体挡住,但从地面的水面上可以看到车牌的影子。你能从影子中确定该车的牌照号码吗?
在教学设计中,不仅要展现对称 (二维图形的对称和三维图形的对称)给人的视觉上的美感,而且应当反映其中的一些科学道理 (例如,飞机、轮船的对称能使飞机、轮船在航行中保持平衡;建筑上的对称多半是为了美观,但有时也考虑到使用上的方便和受力平衡等问题)。 2.内容的呈现要突出对实践活动过程的体验和几何活动经验的积累 空间与图形的学习过程,包括对图形的观察、操作、归纳和类比等大量实践活动。学生空间观念的培养,推理能力的发展,对图形美的感受,几何发现等都是在数学实践活动中进行的。因此,教学设计中,应特别注意突出实践活动的过程和活动经验的获取,教学内容的呈现可以通过设置问题情境,提出问题,得出猜想,最终形成命题并进行必要的证明,从而让学生体验知识的产生和发展过程。这样,既能够提高学生的兴趣,也能够使他们体会定理的形成过程及证明的必要性和价值。图形与变换的内容
包括用变换研究图形的性质,用变换认识、解释现实世界中有关现象,以及利用变换设计图案等过程。教学设计要充分设计多种实践活动,使学生体会利用图形变换能够更好地认识图形与现实世界的广泛联系,积累运用变换的方法解释或处理实际问题的活动经验
总之,在新的教育理念下,初中数学教学设计是一个学习和研究的过程。一个成功的教学离不开成功的设计,只有充分地酝酿、思考、驾驭教材,引导学生,才有可能使我们的教学精彩纷呈,高潮迭起。
因篇幅问题不能全部显示,请点此查看更多更全内容