您的当前位置:首页正文

乘法分配律和结合律总结

2024-08-04 来源:榕意旅游网
乘法分配律和结合律总结(附练习)

知识点:

1、乘法分配律:两个数的和(或差)与一个数相乘,可以把两个加数(或被减数、减数)分别与这个数相乘,在把两个积相加(或相减),结果不变。用字母表示数:(a+b)×c=a×c+b×c或(a-b)×c=a×c-b×c 补充知识点:

2、式子的特点:式子的原算符号一般是×、+(-)、×的形式;在两个乘法式子中,有一个相同的因数;另为两个不同的因数之和(或之差)基本上是能凑成整十、整百、整千的数。

3、 102×88、99×15这类题的特点:两个数相乘,把其中一个比较接近整十、整百、整千的数改写成整十、整百、整千与一个数的和(或差),再应用乘法分配律可以使运算简便。 乘法结合律知识点 知识点:

1、乘法结合律:三个数相乘,先把前两个数相乘,再和第三个数相乘,或者先把后两个数相乘,再和第一个数相乘,它们的积不变。用字母表示是:(a×b)×c=a×(b×c).

2、使用时机:当几个数相乘时,如果其中两个数相乘得整十、整百、整千的数就可以应用乘法交换律和乘法结合律。乘法结合律可以改变乘法运算中的顺序。数字如;25和4、50和2、125和8、50和4、500和2等。 练习题:

类型一:(注意:一定要括号外的数分别乘括号里的两个数,再把积相加) (40+8)×25 125×(8+80) 36×(100+50)24×(2+10) 86×(1000-2)15×(40-8)

类型二:(注意:两个积中相同的因数只能写一次)

36×34+36×66 75×23+25×23 63×43+57×6393×6+93×4 325×113-325×13 28×18-8×28

类型三:(提示:把102看作100+1;81看作80+1,再用乘法分配律) 78×102 69×102 56×101 52×102 125×81 25×41

类型四:(提示:把99看作100-1;79看作80-1,再用乘法分配律) 31×99 42×9829×99 85×98125×7925×39

类型五:(提示:把56看作56×1,再用乘法分配律) 83+83×9956+56×99 99×99+9975×101-75 125×81-12591×31-91

因篇幅问题不能全部显示,请点此查看更多更全内容