您的当前位置:首页正文

A DEFORMABLE MODEL FOR IMAGE SEGMENTATION IN NOISY MEDICAL IMAGES

2023-09-09 来源:榕意旅游网
ADEFORMABLEMODELFORIMAGESEGMENTATIONINNOISYMEDICALIMAGES

nozF.L.Valverde,N.Guil,J.Mu˜

Q.Li,M.Aoyama,K.DoiKurtRossmanLaboratories

DepartmentofRadiologyTheUniversityofChicago,USA

resultsshowthatournewdeformablemodelisabletoseg-mentobjectsinnoisyimages.Finally,inSection5,conclu-sionsarepresented.

2.DEFORMABLEMODELSFORSEGMENTATIONThedeformablemodelscanbeclassifiedintofourcategories[7]:

1Parametricallydeformablemodels,whichareessen-tially2Dinnatureandaidinthesegmentationofim-ageslices.TheapproachisbasedonellipticFourierdecompositionasproposedbyStaibandDuncan[8]2Energyminimizingsnakesareattractedtoimagefea-turessuchaslinesandedges,whereasinternalsplineforcesimposeasmoothnessconstraint,asdescribedbyKassetal.[1].Someinterestingextensionstothisinitialworkcanbefoundin[9,10,11,12].

33Ddeformablesurfaces,usedbyCohenetal.[13]wheredeformablemodelsthatdeformundertheac-tionofinternalforces,suchaselasticpropertiesofthesurface,andexternalforcesattractingthesurfacetowarddetectededgeelements.

4Deformablesuperquadrics,proposedbyTerzopoulosandMetaxas,[14],anddeformablegeneralizedcylin-ders,proposedbyO’DonnelandGupta[15],whichincorporateglobalshapeparametersofasuperellip-soidandgeneralizedcylinder,respectively,andlocaldegreesoffreedombasedonelasticpropertiesandactionofexternalforces.Thesemodelscanbeusedforextractinggrossshapefeaturesfromvisualdata,whichcanbeusedforindexingontoadatabaseofstoredmodelstoprovideshaperecognition.Localde-formationhelpsinreconstructingthedetailsofcom-plexshapestoprovideshapereconstruction.Themethodologyproposedinthispaperisincludedinthesecondcategory.

(1)DepartmentofComputerScience(2)DepartmentofComputerArchitecture

UniversityofMalaga,Spain

ABSTRACT

Deformable-model-basedsegmentationtechniquescanovercomesomelimitationsofthetraditionalimageprocess-ingtechniques.Currentlydevelopeddeformablemodelscancopewithgapsandanotherirregularitiesinobjectbound-aries.However,theypresentproblemsinnoisyimages.Ourapproach,presentedinthispaper,isabletosegmentobjectsinnoisyimagesbydefininganewenergyfunctionassoci-atedwithimagenoiseandavoidingthetendencyofcontourpointstobunchup.Themodelisvalidatedforvesselseg-mentationonmammograms.

1.INTRODUCTION

Adeformable-model-basedsegmentationschemecanover-comemanyofthelimitationsoftraditionalsegmentationtechniques.Continuousgeometricmodelsconsideranob-jectboundaryasawholeandcanmakeuseofaprioriknowl-edgeofobjectshapetoconstrainthesegmentationprob-lem.Theinherentcontinuityandsmoothnessofthemodelscancompensateforgapsandotherirregularitiesinobjectboundaries.Furthermore,theparametricrepresentationsofthemodelsprovideacompactandanalyticaldescriptionoftheobjectshape.

Snakes[1]representaspecialcaseofthegeneralmulti-dimensionaldeformablemodeltheory[2].Snake-basedal-gorithmstypicallyusedynamicprogramming(DP)inordertominimizeanenergyexpression.SeveralmethodsbasedonDPhavebeenpublishedbyAminietal.[3],Popeetal.[4],WilliamsandShah[5],andGeigerandKogler[6],butnoneofthemisapplicabletonoisyimages.Wewillpresentanewapproachbasedthatisadequateforsegmentingob-jectsinnoisyimages.

Thispaperisorganizedasfollows.Inthenextsectionabriefreviewofpreviousworkondeformablemodelsinseg-mentationisgiven.Thelimitationsoftheseproposedmeth-odsandsomeopenproblemsarepointedout.Ournewap-proachtoadeformable-model-basedsegmentationschemeispresentedinSection3,whereanewenergyfunctionforsegmentationinnoisyimagesisdescribed.InSection4the

0-7803-6725-1/01/$10.00 ©2001 IEEE82

2.1.Relatedwork

Aminietal[3]appliedaniterativealgorithmwhere,ateachstep,DPwasemployedtominimizethecurrentenergy,byallowingjustsmallchangesinthesnake.Thisapproachpermitstheinclusionofhardconstraintsinadditiontosoftconstraints.However,themethodhashighcomputationalcomplexity.Otherapproaches,likethatofPopeetal.[4],restrictthetypeofcontourthatcanbeused.WilliamsandShah[5]presentedafastalgorithmforactivecontours.Their”greedy”algorithmhasaperformancecomparabletody-namicprogrammingandvariationalcalculusapproaches.Thesepreviousmethodsalsohavesomecommonlim-itations,andseveralgeneralproblemscanbepointedout.First,theinitialapproachbyKassetal.[1]hassomeprob-lems,suchasnumericalinstabilityandatendencyforpointsto’bunchup’ondenseportionsofedgecontours.Theap-proachofAminietal.[3]ismorestableandsolvestheproblemof’bunchup’,butitisveryslow.ThebunchupproblemisalsosolvedwiththealgorithmofWilliamsandShah,buttheactivecontourdoesnotshrinkwhenthefunc-tionenergyisminimized.Second,acarefulcontourini-tializationisnecessaryintheabovementionedmethodsinordertoobtainagoodfinalresult.Infact,theapplicationofWilliamsandShah’salgorithm[5]producesbadsegmenta-tionresultsiftheinitialcontourisnotclosetotheedgesoftheobject.Third,noneoftheseapproachesareapplicabletonoisyimagesbecausenoisyregionsareconsideredapartoftheedgeofanobject.Thiscancauseerroneousobjectsegmentation.

3.DESCRIPTIONOFANEWDEFORMABLE

MODELIntheinitialapproachofKassetal.thecontourisrepre-sentedbyavector,,whereisthearclength.Theenergyalongthesnakeiscalculatedasfollows:

Fig.1.Processofmoving

to

3.1.Solvingthe’bunchup’problem

Inourdeformablemodelanewapproach,basedondynamicprogramming,isusedtoavoidthetendencyofpointsto’bunchup’ondenseportionsofacontour.Thus,thedis-tancebetweenconsecutivecontourpointsisevaluatedateachstep,anddeviationsfromthemeandistancehigherthanathresholdarenotallowed.Inthefollowing,theex-pressionstoimplementthisnewconditionindynamicpro-grammingarepresented.Letbeadiscreteandclosedcontourofpoints,with=.Themeandis-tanceisdefinedas:

(2)

representsthepositionofapointIf

asfollows:wecandefine

attime,

(3)

andisthepointwiththehighestwhere

valueforthegradientoftheenergyfunction,withinacircleofradiuscenteredatpoint.Inaddition,theexpression

functionisforthe

(1)

(4)

isavectorofmagnitudeandhavingthewhere

.Figure1illustratesthevaluessamedirectionas

thatthepreviouslydefinedfunctionstakeinastepofthealgorithm.Noticethatparametercontrolsthedegreeofuniformityinthedistancebetweenpoints.Thesmallerthevalueof,themoreevenlyspacedarethepoints.When=0,thepointsareasevenlyspacedaspossible.

representstheinternalenergyofthecontourwhere

duetobendingordiscontinuities,isrelatedtoim-indicatestheexternalconstraints.Theageforces,and

imageforcescanbeduetovariouseventsaslines,edges,orterminations[1].Theinternalsplineenergyisrepresentedbyafirst-order-termwhichgenerateslargervaluesincurvegaps.Thesecond-ordercontinuitytermtakeslargervalueswherethecurveisbendingrapidly.Theandcoefficientsareusedtodeterminethestrengthtowhichthecontourisal-lowedtostretchorbendatapoint.

3.2.Noiseproblem

Noisedetectioncanbecarriedoutbyincorporationofglobalpixelinformation.Forthispurpose,wedefineanewenergy

83

term,

,asfollows:

(5)

whereistheprobabilityofhavinglocalnoiselocatedatpoint.

isbasedontheThedefinitionofthefunction

noisefeaturesofaparticularapplication.Inthiswork,weareapplyingsnaketechniquestoimagesfrommammogramswherethemajorityofthenoiseisproducedbysmallar-tifacts.Thus,twoassumptionshavebeenmade:noiseisspreadalongsmallregionsontheimage,andtheseregionsarefarenoughfromtheobjecttobesegmentedorarean-othernoisyregion.

isdefinedas:Function

.Else-assignedtotheprobabilityif

where,thepointisassociatedwithanoisyregion.Figure2illustratesdifferentsituationsforthecalculationof.

valueisincludedasaterminthegen-Thenew

eralexpressionofthesnakeenergy:

(7)

Thisnewtermeliminatestheattractionthatsmallnoisere-gionscauseonthesnake.

(6)

calculatesthenumberofclusters

withthatappearonacircumferencecenteredat

radius.Theseclustersaregeneratedbybinarizing(withathreshold)theoriginalimagewithinthede-finedcircleandeliminatingallthepointsonthecir-cumferencethatarenotconnectedtothecenter.

isthevalueofthecurvatureinthecon-.touratthepoint

isathresholdforandisusedtodiscrim-inatebetweensmallregionsofnoiseandsmallgapsontheedgesoftheobject.Thefurthertheregionsofnoisearefromtheobject,thelargerthecurvature

.Inthisway,smallgapsontheobjectatpoint

edgecanbedistinguishedfromnoisyregions.

Fig.3.a)Initialcontour,b)after20iterations,c)40itera-tions,d)60iterations,e)80iterations,f)100iterations,g)118iterations.

4.RESULTS

Thenewapproachtodeformablecontoursegmentationhasbeenvalidatedinadatabaseofmammogramsbydetectingvesselsontheimages.Asinitialcontour,acircumferencethatcircumscribestheimageisused.InFigure3,thestepsofouralgorithmareshown.

Inaddition,otherresultsarepresentedinFigure4.Theseimageshaveasizeof128x128pixelswith256graylevels.

valuesForapplicationofourtechnique,thesameand

havebeenemployedinalltheimages.Valuesof10and90havebeenusedforand,respectively.

Mostcasesdriventoaprecisedetectionofthevessel.Eveninsomedifficultcircumstances,asthatinFigure4.e,

Fig.2.Computationof

¿Fromequation6,apointcorrespondstoanoisyre-gion(probabilityequalto1)ifnoclustersaredetectedon

.Avalueof0.5isthecircumference,and

84

theresultsareacceptable.However,baddetectionswereperformedinsomesituationsduetolimitationsonthenoisemodel(Figures4.g,h,i).

Currently,wearestudyingimprovementsofthenoisemodelinordertoavoidsituationsthatcausebadsegmenta-tions.

[2]D.Terzopoulos,“Regularizationofinversevisualproblems

involvingdiscontinuities,”IEEETrans.PatternAnal.Ma-chineIntelligence,vol.8,no.4,pp.413–424,1986.[3]A.Amini,T.Weymouth,andR.Jain,“Usingdynamicpro-grammingforsolvingvariationalproblemsinvision,”IEEETrans.PatternAnal.MachineIntelligence,vol.12,no.9,pp.885–867,1990.[4]D.Pope,D.Parker,C.Clayton,andDGustafason,“Left

ventricularborderrecognitionusingadynamicsearchalgo-rithm,”Radiology,vol.155,no.2,pp.513–517,1985.[5]D.WilliamsandM.Shah,“Afastalgorithmforactivecon-toursandcurvatureestimation,”CVGIP:ImageUnderstand-ing,vol.55,no.1,pp.14–26,1991.[6]D.GeigerandJ.Kogler,“Scallingimagesandimagefeatures

viathenormalizationgroup,”Proc.IEEEConf.ComputerVisionandPatternRecognition,1993.[7]R.AcharyaandR.P.Menon,“Areviewofbiomedicalseg-mentationtechniques,”DeformableModelsinMedicalIm-ageAnalysis.IEEEComputerSociety,pp.140–161,1998.[8]L.H.StaibandJ.S.Duncan,“Boundaryfindingwithpara-metricdeformablemodels,”IEEETrans.PatternAnal.Ma-chineIntelligence,vol.14,pp.1061–1075,1992.[9]A.BlakeandR.Cipollo,“Thedynamicanalysisofapparent

contours,”FirstECCV.Spinger-Verlag,pp.73–82,1990.[10]A.P.PentlandandB.Horowitz,“Rcoveryofnonrigidmotion

andstructure,”IEEETrans.PatternAnal.MachineIntelli-gence,vol.13,no.7,July1991.[11]A.P.PentlandandJ.R.Willians,“Goodvibrations:Modal

dynamicsforgraphicsandanimation,”Proc.ACMSIG-GRAPH,,pp.215–222,1989.[12]A.YuilleandP.Hallinan,“Deformabletemplates,”Active

Vision,MITPress,Cambirdge,Mass,1992.

Fig.4.Resultsfornineimages

5.CONCLUSIONS

Anewapproachtoimagesegmentationbasedonadeformablecontourmodelhasbeenpresented.Anewconditionhasbeenaddedtothedynamicprogrammingalgorithminordertoavoidthebunchupproblem.Inaddition,anewtermofenergyhasbeenintroducedintotheglobalenergycompu-tation.Thistermidentifiesthenoiseassociatedwithimageregionsandallowsthesnaketokeepawayfromnoiseat-traction.

6.ACKNOWLEDGEMENT

TheauthorsaregratefultoMrs.Lanzlforeditingthedocu-ment.

7.REFERENCES

[1]M.Kass,A.Witkin,andD.Terzopoulus,“Snakes:Active

contourmodels,”Int.J.Comput.Vision,vol.1,no.4,pp.321–331,1988.

[13]I.Cohen,L.D.Cohen,andN.Ayache,“Usingdeformable

surfacestosegement3-dimagesandinterdifferentialstruc-tures,”CVGIP:ImageUnderstanding,vol.56,no.2,pp.242–263,1992.[14]D.TerzopoulosandD.Metaxas,“Dynamic3dmodelswith

localandglobaldeformations:Deformablesuperquadrics,”IEEETrans.PatternAnal.MachineIntelligence,vol.13,no.7,pp.703–714,July1991.[15]T.etalO’Donnel,“Extrudedgeneralizedcylinder:Ade-formablemodelforobjectrecovery,”Proc.CVPR,IEEEComputerSocietyPress,LosAlamitos,Calif.,1994.

85

因篇幅问题不能全部显示,请点此查看更多更全内容