0 引言
众所周知,电是一种能源,它能造福人类但如果我们使用不得当,它也会给我们带来灾害。目前,电是我们社会的发展与进步不可缺少的能源,其重要性不言而喻,同时由于人们对电知识的缺乏、使用不当、防护措施不够完善等原因引发的人身安全和财产损失事故层出不穷。本文是在学习钮教授的《电气安全》后,仅就三种低压配电系统谈谈自己的收获与见解,希望对了解三种常见的低压配电系统有所帮助。
1 简述三种系统字母涵义
根据现行的国家标准《低压配电设计规范》(GB50054)的定义,将低压配电系统分为三种,即TN、TT、IT三种形式。其中,第一位字母(表示电力(电源)系统对地关系): I—— 表示电力系统所有带电部分与地绝缘或一点经阻抗接地。 T -—则表示电力系统一点(通常是中性点)直接接地。 第二位字母(表示用电装置外露的金属部分对地的关系,): T —— 表示电气装置的外露可导电部分直接接地(与电力系统的任何接地点无关)。 N ——表示电气装置的外露可导电部分通过保护线与电力系统的中性点联结。
TN系统:电源变压器中性点接地,设备外露部分与中性线相连。TT系统:电源变压器中性点接地,电气设备外壳采用保护接地.T系统:电源变压器中性点不接地(或通过高阻抗接地),而电气设备外壳电气设备外壳采用保护接地.
2 TN系统
电力系统的电源变压器的中性点接地,根据电气设备外露导电部分与系统连接的不同方式又可分三类:即TN—C系统、TN-S系统、TN—C-S系统。
2.1 T N—C系统
L 1 L 2 L 3 PEN 电力系统接地 点 外露可导电部分
其特点是:电源变压器中性点接地,保护零线(PE)与工作零线(N)共用。
(1)它是利用中性点接地系统的中性线(零线)作为故障电流的回流导线,当电气设备相线碰壳,故障电流经零线回到中点,由于短路电流大,因此可采用过电流保护器切断电源。TN—C系统一般采用零序电流保护;
(2)TN—C系统适用于三相负荷基本平衡场合,如果三相负荷不平衡,则PEN线中有不平衡电流,再加一些负荷设备引起的谐波电流也会注入PEN,从而中性线N带电,且极有可能高于50V,它不但使设备机壳带电,对人身造成不安全,而且还无法取得稳定的基准电位; (3)TN-C系统应将PEN线重复接地,其作用是当接零的设备发生相与外壳接触时,可以有效地降低零线对地电压。
由上可知,TN—C系统存在以下缺陷:
(1)当三相负载不平衡时,在零线上出现不平衡电流,零线对地呈现电压。当三相负载严重不平衡时,触及零线可能导致触电事故。
(2)通过漏电保护开关的零线,只能作为工作零线,不能作为电气设备的保护零线,这是由于漏电开关的工作原理所决定的。
(3)对接有二极漏电保护开关的单相用电设备,如用于TN-C系统中其金属外壳的保护零线,严禁与该电路的工作零线相连接,也不允许接在漏电保护开关前面的PEN线上,但在使用中极易发生误接。
(4)重复接地装置的连接线,严禁与通过漏电开关的工作零线相连接。TN—S供电系统,将工作零线与保护零线完全分开,从而克服了TN—C供电系统的缺陷,所以现在施工现场已经不再使用TN-C系统。
2.2、 TN—S系统
L1L2L3NPE电力系统接地点外露可导电部分
整个系统的中性线(N)与保护线(PE)是分开的。
(1)当电气设备相线碰壳,直接短路,可采用过电流保护器切断电源;
(2)当N线断开,如三相负荷不平衡,中性点电位升高,但外壳无电位,PE线也无电位;
(3)TN-S系统PE线首末端应做重复接地,以减少PE线断线造成的危险. (4)TN—S系统适用于工业企业、大型民用建筑。
目前单独使用独一变压器供电的或变配电所距施工现场较近的工地基本上都采用了TN-S系统,与逐级漏电保护相配合,确实起到了保障施工用电安全的作用,但TN—S系统必须注意几个问题:
(1)保护零线绝对不允许断开。否则在接零设备发生带电部分碰壳或是漏电时,就构不成单相回路,电源就不会自动切断,就会产生两个后果:一是使接零设备失去安全保护;二是使后面的其他完好的接零设备外壳带电,引起大范围的电气设备外壳带电,造成可怕的触电威胁。因此在《JGJ46-88施工现场临时用电安全技术规范》规定专用保护线必须在首末端做重复接地.
(2)同一用电系统中的电器设备绝对不允许部分接地部分接零。否则当保护接地的设备发生漏电时,会使中性点接地线电位升高,造成所有采用保护接零的设备外壳带电。
(3)保护接零PE线的材料及连接要求:保护零线的截面应不小于工作零线的截面,并使用黄/绿双色线。与电气设备连接的保护零线应为截面不少于2.5mm2的绝缘多股铜线.保护零线与电气设备连接应采用铜鼻可靠连接,不得采用铰接;电气设备接线柱应镀锌或涂防腐油脂,保护零线在配电箱中应通过端子板连接,在其他地方不得有接头出现。
2.3、 TN—C—S系统
L1L2L3PENPEN电力系统接地点外露可导电部分
它由两个接地系统组成,第一部分是TN—C系统,第二部分是TN—S系统,其分界面在N线与PE线的连接点.
(1)当电气设备发生单相碰壳,同TN—S系统; (2)当N线断开,故障同TN—S系统;
(3)TN-C-S系统中PEN应重复接地,而N线不宜重复接地.
PE线连接的设备外壳在正常运行时始终不会带电,所以TN—C-S系统提高了操作人员及设备的安全性。施工现场一般当变台距现场较远或没有施工专用变压器时采取TN—C—S系统.
3 TT供电系统
L1L2NL3NRPRNRE 电源中性点直接接地,电气设备的外露导电部分用PE线接到接地极(此接地极与中性点接地没有电气联系)在采用此系统保护时,当一个设备发生漏电故障,设备金属外壳所带的故障电压较大,而电流较小,不利于保护开关的动作,对人和设备有危害。为消除T系统的
缺陷,提高用电安全保障可靠性,根据并联电阻原理,特提出完善TT系统的技术革新。技术革新内容是:用不小于工作零线截面的绿/黄双色线(简称PT线),并联总配电箱、分配电箱、主要机械设备下埋设的4-5组接地电阻的保护接地线为保护地线,用绿/黄双色线连接电气设备金属外壳。 它有下列优点:
1)单相接地的故障点对地电压较低,故障电流较大,使漏电保护器迅速动作切断电源,有利于防止触电事故发生。
2)PT线不与中性线相联接,线路架设分明、直观,不会有接错线的事故隐患;几个施工
单位同时施工的大工地可以分片、分单位设置PT线,有利于安全用电管理和节约导线用量. 3)不用每台电气设备下埋设重复接地线,可以节约埋设接地线费用开支,也有利于提高接地线质量并保证接地电阻≤10Ω,用电安全保护更可靠。
TT系统在国外被广泛应用,在国内仅限于局部对接地要求高的电子设备场合,目前在施工现场一般不采用此系统。但如果是公用变压器,而有其它使用者使用的是TT系统,则施工现场也应采用此系统。
4 IT系统
L1L2NL3NRPRNRE
保护原理(适用于各种不接地网)
∵ RE与RP (人体电阻) 呈并联关系,且RE // RP ≈ RE ∵ RE<<│Z│,
∴ UP (人体电压)↓↓——在安全范围内。
电力系统的带电部分与大地间无直接连接(或经电阻接地),而受电设备的外露导电部分则通过保护线直接接地。这种系统主要用于10KV及35KV的高压系统和矿山、井下的某些低压供电系统,不适合在施工现场应用,故在此不再分析。
建设部新颁发的《建筑施工安全检查标准》(JGJ59-99)规定:施工现场专用的中性点直接接地的电力系统中必须采用TN-S接零保护系统。因此,TN—S接零保护系统在施工现场中得到了广泛的应用,但如果PE线发生断裂或与电气设备未做好电气连接,重复接地阻值达不到安全的要求,也同样会发生触电事故,为了提高TN—S接零保护系统的安全性,在此提出等电位联接概念。
所谓等电位联结,是将电气设备外露可导电部分与系统外可导电部分(如混凝土中的主筋、各种金属管道等)通过保护零线(PE线)作实质上的电气连接,使二者的电位趋于相等。应注意差异,即等电位联结线正常时无电流通过,只传递电位,故障时才有电流通过。等电位联结的作用。
(1)总等电位联结能降低预期接触电压;
(2)总等电位联结能消除装置外沿PE线传导故障电压带来的电击危险。因此施工现场也应逐步推广该技术.当然,无论采取何种接地形式都绝不是万无一失绝对安全的.施工现场临时用电必须严格按JGJ46—88规范要求进行系统的设置和漏电保护器的使用,严格履行施工用电设计、验收制度,规范管理,才能杜绝事故的发生。
5 结论
TN-S—-可用于爆炸、火灾危险性较大或安全要求高的场所,宜用于独立附设变电站的车间。也适用于科研院所、计算机中心、通信局站等。正常工作条件下,外露导电部分和保护导体呈零电位——最“干净\"的系统。
TN—C-S—-宜用于厂内设有总变电站,厂内低压配电的场所及民用楼房.
TN—C—-可用于爆炸、火灾危险性不大,用电设备较少、用电线路简单且安全条件较好的场所.
TT系统—-设备外壳及配电网均直接接地,TT系统,必须配合使用漏电保护装置或过电流保护装置,并优先使用前者。主要用于低压共用用户. 农村低压电网用电设备分散,线路长时采用。
IT 系统主要用于1~10kV 配电网(6kV高压电动机外壳接地保护);煤矿井下低压配电网 380V、660V、110V(照明);对安全有特殊要求。(有些液化站气采用).
6 致谢
非常感谢钮老师在百忙之中,给我们研究生班安排的三种低压配电系统的专题课程,让我们对三种低压配电系统有一个较为全面的了解,让我们受益匪浅,提升了我们在电气安全方面的专业素养。
因篇幅问题不能全部显示,请点此查看更多更全内容