挤产生延误、降低流率、带来燃油损耗和负面的环 境影响。为了提高道路系统的效率,国内外许多研 究者一直致力于车流运行模型的研究。Daganzo[1] 提出了一种和流体力学LWR 模型相一致的元胞传 输模型,这种模型能用来模拟和预测交通流的时空 演化,包括暂时的现象,如排队的形成、传播、和消 散。Heydecker 和Addison[2]通过研究车速和密度的 因果关系分析和模拟了在变化的车速限制下的交 通流。Jennifer 和Sallissou[3]提出了一种混合宏观 模型有效地描述了路网的交通流。
然而,拥挤也会由交通异常事件引起。交通异
常事件定义为影响道路通行能力的意外事件[4],如 交通事故、车辆抛锚、落物、短期施工等,从广义角 度看,还应包括恶劣天气与特殊勤务等。异常事件 往往造成局部车道阻塞或关闭,形成交通瓶颈,引 起偶发性拥挤,这已经逐渐成为高速道路交通拥挤 的主要原因[5],越来越多地受到研究者们的重视。 例如M. Baykal-Gursoy[6]等人提出了成批服务受干 扰下的稳态M/M/c 排队系统模拟了发生异常事件 的道路路段的交通流。Chung[7]依据韩国高速公路 系统监测的准确记录的大型交通事故数据库提出 了一种事故持续时间预测模型。当然,这些研究最 终都是为了帮助缓解异常事件引起的交通拥挤。 交通异常事件发生后,事发地段通行能力减
小,当交通需求大于事发段剩余通行能力时,车辆 排队,产生延误,行程时间增加[8],交通流量发生变 化。本文以高速公路基本路段发生交通事故为例, 主要分析了交通事故发生后不同时间段内事故点 及其上游下游路段交通流量的变化,用于以后进一 步的突发事件下交通流预测工作。
1 交通事故影响时间分析
由于从交通事故发生到检测到事故、接警、事
故现场勘测、处理、清理事故现场恢复交通,以及恢 复交通后车辆排队不再增加都需要一定的时间。 这部分时间主要由三部分构成: 第一部分是事故发 生到警察到达现场的时间T1 ; 第二部分是交通事故 现场处理时间T2
,由现场勘测、处理到事故族除、恢
复交通; 第三部分是交通事故持续影响时间T3 ,这
部分时间从恢复事故现场交通开始,到事故上游车
辆排队不再增加,即排队开始减弱[9]。 在T1
内,事故现场保持原状,没有进行处理,这
里分两种情况考虑: ( 1) 当交通事故占用部分车道 时,这时事故点的剩余通行能力Qs≠0,交通事故越 严重,则相应Qs
越小。若事故点上游的交通需求 Q < Qs
,则车辆以较低的速度通过事故点,上游不会 形成车辆拥挤排队; 若Q > Qs ,则交通流可按事故点
的剩余断面通行能力通过事故点,超过该通行能力 的车流在事故点上游排队。( 2) 当交通事故十分严 重时,事故点的剩余通行能力Qs = 0,造成事发路段 断流,事故点上游车辆排队,发生交通拥挤堵塞,进 而排队一直向上游延伸。 在T2
内,确认交通事故发生后,相关部门到现
场处理异常事件,在此过程中,事故点交通可能会 受到进一步影响,事故断面通行能力也随之发生变 化[5],一般会变小,甚至变为0( 全封闭处理) ,视事 件处理具体情况而定,事发点上游交通处于严重拥 挤状态,车辆排队增加。 由于在交通事故接警时间T1 和处理时间T2 阶
段事故点上游交通车辆产生排队,若没有车辆排
队,则T3 = 0; 若有车辆排队,则当事故处理完毕、道 路恢复交通时,排队车辆开始消散。交通事故持续 影响时间T3
是事故处理完毕、道路恢复交通至车辆
排队不再增加这段时间,即交通流消散波从车辆排 队队列的头部传到尾部这段时间[9]。
2 事故路段车辆排队长度分析
如图1 所示,设某高速公路基本路段长度为L
( m) ,单方向车道数为n,单方向车道宽度为D( m) , 在道路上t = 0 时刻发生了一起交通事故,事故车辆 占用道路宽度为b( m) ,长度为a( m) ,事故点上游 路段长度为L'。假设车辆的到达率为Q,在同级服 务水平上事故发生断面通行能力为Qs ,道路在正常
条件下的单方向的通行能力为Qi。
图1 发生交通事故的高速公路基本路段
本文暂只考虑如图1 所示的基本路段内的车辆
排队长度,这里不同于以往文献的“排队长度”,以 往文献中的“排队长度”没有区分不同的“阻塞行车 道宽度”。这里的“阻塞行车道宽度”不只是事故车 辆实际占用宽度,还包括虚拟占用宽度,比如事故 发生位置横跨在两车道之间,导致事故点只能通行 一个车道宽度的车流,那么此时“阻塞行车道宽度” 为两个车道的宽度。设Q > Qs ,m( Ti ) 为Ti 时间内
事故点阻塞行车道宽度( 本文把单个车道宽度和车 辆宽度看作同宽) ,Lm
( t) 为t 时刻事故点上游路段
L'内车流以阻塞行车道宽度m 的排队长度,且 w( Ti
) = uf 1 - ki1 + ki 2 k
j
为Ti
时间内新产生的交
通波[10]的速度,其中uf 为该事故路段的自由流速
度,即该路段的设计车速,可以通过城市地理信息 平台GIS 得到道路基本数据; ki1、ki2 分别为Ti 内事
故点上游、事故点瓶颈段的交通密度,可以由交通 检测系统监测得到; kj
为该路段的交通堵塞密度,由
道路的基本数据可以计算得到[9]。 2. 1 0 < t≤T1 ( 1) 若L' w( T1 ) < T1 ,则 t < L' w( T1
) 时,Lm( T1) ( t) = w( T1 ) t < L'; t≥ L' w( T1
) 时,Lm( T1) ( t) = L'。 Lm( T2) - m( T1) ( t) = 0。
( 2) 若T1≤ L' w( T1 ) ,则
Lm( T1) ( t) = w( T1
) t,Lm( T2) - m( T1) ( t) = 0, 2. 2 T1 < t≤T1 + T2 在T2
时间内,事发点断面通行能力一般会变 化,设变为Q'S ,则m( Ti
) 也会相应发生变化。这里,
还需要考虑一个时间,就是交通波w ( T2 ) 赶上 w( T1
) 的时间( 设为T'2
) ,赶上之后车流以w( T2 ) 的
速度、m( Ti
) 的宽度继续排队。本文由于只考虑L' 内的排队长度,所以考虑在T2 时间内且在L'段内交 通波w( T2
) 是否赶上w( T1 ) ,即T'2
若同时满足以下 两个条件才需被考虑: Lm( T1) ( T1
) < L',Lm( T1) ( T1 ) + w( T1 ) T'2≤L'; T'2≤T2。
28 期 陈 诚,等: 交通事故影响下事发路段交通流量变化分析 6905
2. 2. 1 Lm( T1) ( T1 ) < L' 若Lm( T1) ( T1 ) + w( T1
) T'2 ≤L'且 T'2 ≤T2 ,则:
当T2 < ( L' - Lm( T1) ( T1 ) - w( T1 ) T'2 ) /
w( T2 ) + T'2 时,
Lm( T1) ( t) = Lm( T1) ( T1 ) + | w( T1 ) | ( t - T1 ) ,
当t - T1≤T'2 时
Lm( T1) ( t) = Lm( T1) ( T1 ) + | w( T1
) | T'2 + | w( T2 ) |
( t - T1 - T'2
) ,当t - T1 > T'2 时 。
Lm( T2) - m( T1) ( t) = w( T2 ) ( t - T1 ) ,
当t - T1≤L' / w( T2 ) 时
Lm( T2) - m( T1) ( t) = L',当t - T1 > L' / w( T2
)
时
。
当T2≥( L' - Lm( T1) ( T1 ) - w( T1 ) T'2
) / w( T2 ) + T'2 时,
Lm( T1) ( t) = Lm( T1) ( T1 ) + | w( T1 ) | ( t - T1 ) ,
当t - T1≤T'2 时
Lm( T1) ( t) = Lm( T1) ( T1 ) + | w( T1
) | T'2 + | w( T2 ) |
( t - T1 - T'2
) ,当( L' - Lm( T1) ( T1 ) + | w( T1 ) | T'2 ) / | w( T2
) | + T'2 ≥t - T1 > t'2 时
Lm( T1) ( t) = L',当( L' - Lm( T1) ( T1 ) + | w( T1 ) | T'2 ) / | w( T2
) | + T'2 < t - T1≤t2
时 。
Lm( T2) -m( T1) ( t) = w( T2 ) ( t - T1 ) ,
当t - T1≤L' / w( T2 ) 时
Lm( T2) -m( T1) ( t) = L',当t - T1 > L' / w( T2
) 时
。
若Lm( T1) ( T1 ) + w( T1
) T'2 > L',则 Lm( T1) ( t) =Lm( T1) ( T1 ) + w( T1 ) ( t -T1
) ,
当t -T1≤ L' -Lm( T1) ( T1 ) / w( T1 ) 时
Lm( T1) ( t) =L',当t -T1 > L' -Lm( T1) ( T1 ) / w( T1
) 时
。
Lm( T2) - m( T1) ( t) = w( T2 ) ( t - T1 ) ,
当t - T1≤L' / w( T2 ) 时
Lm( T2) - m( T1) ( t) = L',当t - T1 > L' / w( T2
) 时。
若T'2 > T2 ,则
Lm( T1) ( t) = Lm( T1) ( T1 ) + w( T1 ) ( t - T1 ) ,
当t - T1≤ L' - Lm( T1) ( T1 ) / w( T1 ) 时
Lm( T1) ( t) =L',当t -T1 > L' -Lm( T1) ( T1 ) / w( T1
) 时
。
Lm( T2) - m( T1) ( t) = w( T2 ) ( t - T1 ) ,
当t - T1≤L' / w( T2 ) 时
Lm( T2) - m( T1) ( t) = L',当t - T1 > L' / w( T2
) 时。
2. 2. 2 Lm( T1) ( T1 ) = L'
Lm( T1) ( t) = L',
Lm( T2) - m( T1) ( t) = w( T2 ) ( t - T1 ) ,
当t - T1≤L' / w( T2 ) 时
Lm( T2) - m( T1) ( t) = L',当t - T1 > L' / w( T2
) 时
。
2. 2. 3 T1 + T2 < t≤T1 + T2 + T3 这里同样要考虑交通波w( T3 ) 赶上w( T2 ) 、 w( T1
) 的时间T'3 、T'3 。w( T2 ) 追赶w( T1
) ,赶上之后 以w( T2
) 的速度向上延伸排队,w( T3 ) 追赶前面两 者,先赶上w( T2 ) 后赶上w( T1 ) ( 假如w( T2 ) 还没赶 上w( T1
) ) ,赶上之后排队不再增加,考虑在T3 内L'
段内w( T3
) 是否赶上w( T2 ) 、w( T1 ) ,而w( T3 ) 是消
散波[10],t 时刻排队长度为w( T1 ) 、w( T2 ) 到t 时刻
为止产生的排队长度减去消散波w( T3 ) 向上游传播
延伸的长度L( t) ,相关分析及计算式类似上述,不 再赘述。
3 不同时间段内不同路段的交通流量变化 分析
3. 1 Q≤Qs
如果上游交通量需求低于剩余可通行车道的 正常通行能力,那么,尽管事发路段存在通行能力 瓶颈,但不会导致交通拥挤[5],当上游的流量到达 瓶颈处,密度增大,车速降低,车辆以较低的速度通 过瓶颈点,不会形成排队[8],该事故路段的交通流 量( veh /h) 受影响很小,近似为Q ( veh /h) 。在T2 时间内,由于事故点断面通行能力可能进一步变为 Q's
需要重新判断Q 与Q's 的大小: 若Q≤Q's ,则交通
流影响不大,该基本路段流量( veh /h) 仍与Q 相当; 若Q > Q's
,上游车辆排队,过程类似于Q > Qs 时T1
内车流变化,见下面分析,不再赘述。 3. 2 Q > Qs
此时事故点上游路段车流排队,如上文所述,
6906 科 学 技 术 与 工 程 11 卷
由于在事故发生后事故影响时间的不同时间段内 车辆排队的不同变化,上游路段不同位置不同时刻 的断面短时交通流量会有所不同: 设LP
为上游断面P 距离事故点的长度,QP ( t)
为断面P 在t( s) 时刻的短时交通流量,则 QP
( t) =
Q,当LP > Lm( T1) ( t) ,LP > Lm( T2) - m( T1) ( t) 时 QS
,当LP≤Lm( T1) ( t) ,LP > Lm( T2) - m( T1) ( t) 时 Q'S
,当LP≤Lm( T1) ( t) ,LP≤Lm( T2) - m( T1) ( t)
时
( 0 < t≤T1 + T2 ) ; QP
( t) ≈Qi
( LP≤L( t) ,T1 + T2 < t≤T1 + T2 + T3 ) ( 即
疏散波到达的断面排队消散,车流以最大的通行量 前进) ; T1 + T2 + T3
后整个路段恢复到事故发生之
前的交通流量。
事故点和事故点下游路段各断面短时交通流
量在事故发生后的不同时间段内变化基本一致: 0 < t≤T1
内,事故点和事故点下游的各断面短时交通流 量相当于事故点的断面通行能力QS ; T1 < t≤T1 + T2
内,事故点和事故点下游的各断面短时交通流量相 当于事故点的断面通行能力Q'S ; T1 + T2 < t≤T1 + T2 + T3
内,事故点和事故点下游的各断面短时交通 流量相当于道路通行能力Qi ; T1 + T2 + T3 后道路畅
通,恢复到事故发生前的交通流量。
4 仿真验证
本文采用德国PTV 公司的交通微观仿真软件
VISSIM[11]对上述分析进行仿真验证。仿真中建立 如图1 所示的基本路段,路段长度L = 500 m,由单 方向三车道组成。事故车辆停靠的位置设在右车 道L' = 346 m 处,在上游路段均匀设置四个数据采 集点,事故点断面设置一个采集点,下游路段均匀 设置三个采集点。事故发生的时间设置在320 s 左 右,即上述的t = 0 时刻,T1 = 280 s,T2 = 330 s。T2 内是事故现场处理,仿真中采用信号灯控制的方 式,信号灯设置在靠近事故点前方,考虑到事故处 理时占用更多的车道,这里设置为控制右车道和中 间车道,即阻断两车道进行事故处理。在600 s 时 红灯亮,同时阻断右车道和中间车道进行事故处
理, 930 s 时绿灯亮,事故处理完毕,两闭塞车道畅 通,道路恢复,仿真时间设为3 600 s。仿真中,分别 以6 000 veh /h 和800 veh /h 的流量进行道路车辆到 达率输入( 输入车辆类型比例为重型货车∶ 小汽车 = 0. 02∶ 0. 98) :
图2 事故点上游不同断面短时交通流量变化 图3 事故点断面短时交通流量变化
4. 1 车辆输入为6 000 veh /h 时
各数据采集点每隔30 s 采集一次断面车辆通
过量数据,图2—图6 为不同断面每隔30 s 交通量 变化图,横坐标表示的是180 s—1 200 s 共34 个30 s 的时间间隔,纵坐标表示在相应的30 s 内通过该
断面的交通量( veh·( 30 s) - 1 ) , ser01 ~ ser08 表示
28 期 陈 诚,等: 交通事故影响下事发路段交通流量变化分析 6907
图1 所示的8 个数据采集点断面,观察各图可以看 出这样几点: 事故点断面和下游各断面流量变化较 一致,曲线较重合,在事故发生后,下游断面流量和 事故点相同; 事故点上游各断面流量变化趋势大体 一致,越接近事故点的断面流量变化趋势越提前; 各断面流量变化都经历这样一个过程: Q→QS→Q'S →Qi→Q。
图4 事故点下游不同断面短时交通流量变化 图5 事故点及其下游不同断面短时交通流量变化
4. 2 车辆输入为800 veh /h(非随机)时
各数据采集点每隔3 600 s 采集一次断面车辆
通过量数据,VISSIM 中道路输入流量是以veh /h 来 计的,输入车辆类型为大货车、小汽车,而且车辆进 入路段服从泊松分布,所以在车辆输入量较小的情 况下,数据波动较大,采取短时间( 30 s) 内采集各断 面数据是不准确的。这里采取3 600 s( 一小时) 的 间隔从200 s 时开始采集小时交通量来考察。仿真 得到从上游到下游各断面到3 800 s 时流量分别为
796 veh /h、795 veh /h、794 veh /h、794 veh /h、794
veh /h、793 veh /h、793 veh /h、793 veh /h,说明车辆到 达率较小时,交通事故对该路段的交通流量影响不 大,可认为交通流量不变。
5 结论
本文主要考虑了不同时间段内不同阻塞行车
道宽度的车辆排队长度,对交通事故影响下不同时 间段内交通流量变化进行了分析,为以后的异常事 件下的交通流预测奠定基础,下一步的工作是考虑 非参数回归法在交通事故等异常事件影响下的交 通流量预测算法。
图6 事故点及其上游不同断面短时交通流量变化 参考文献
1 Daganzo C F. The cell transmission model: A dynamic representation of highway traffic consistent with the hydrodynamic theory. Transportation Research Part B,1994; 28B( 4) : 269—287
6908 科 学 技 术 与 工 程 11 卷
2 Heydecker B G,Addison J D. Analysis and modeling of traffic flow under variable speed limits. Transportation Research Part C,2011; 19: 206—217
3 Mccrea J,Moutari S. A hybrid macroscopic-based model for traffic flow in road networks. European Journal of Operational Research, 2010; 207: 676—684
4 Skabardonis A,Petty K,Varaiya P,et al. Evaluation of the freeway service patrol in Los Angeles. UCB-ITS-PRR-98-31, California PATH Research Report,Institute of Transportation Studies,University of California,Berkeley,1998
5 张海军,张珏,杨晓光. 异常事件下高速道路交通状态的分析 与仿真. 交通运输工程学报,2 008; 8( 2) : 116—121
6 Baykal-gursoy M,Xiao W,Ozbay K. Modeling traffic flow interrupted by incidents. European Journal of Operational Research,2009; 195: 127—138
7 Chung Y. Development of an accident duration prediction model on the Korean Freeway Systems. Accident Analysis and Prevention, 2010; 42: 282—289
8 臧华,彭国雄. 城市快速道路异常事件下路段行程时间的研 究. 交通运输系统工程与信息,2 003; 3( 2) : 57—59
9 余斌. 道路交通事故的影响范围与处理资源调动研究. 南京: 东南大学,2 006
10 李作敏. 交通工程学( 第二版) . 北京: 人民交通出版社, 2000: 83—87
11 Planung Transport Verkehr AG. Vissim User Manual. Karlsruhe: PTV Corporation,2003
Analysis on Variation in Traffic Flow of the Segment under the Influence of the Traffic Accident
CHEN Cheng,TAN Man-chun
( Department of Mathematics,College of Information Science and Technology,Jinan University,Guangzhou 510632,P. R. China)
[Abstract] Taking a traffic accident,one of unusual traffic incidents,as an example,it analyzed time in effects
of the accident,vehicles queue length,and variation in traffic flow of different cross-sections in different time slices
in effects of the accident in basic freeway segments. Employing the traffic wave theory,it provided vehicles queue
length with various widths of the blocked lanes in different time slices in effects o__
因篇幅问题不能全部显示,请点此查看更多更全内容