DOI:10.11949/j.issn.0438-1157.20171364
分子筛SBA-15负载离子液体[P66614][Triz]脱除氢烷气中CO2
李艳南,程军,刘建忠,周俊虎,岑可法
(浙江大学能源清洁利用国家重点实验室,浙江 杭州 310027)
摘要:以高效吸收CO2的离子液体(IL)[P66614][Triz]作为吸收剂,通过浸渍法负载到两种不同孔径的介孔分子筛
SBA-15上,用于脱除生物氢烷气中CO2,并利用N2吸附仪、扫描电子显微镜(SEM)和高倍透射电子显微镜(HRTEM)对负载材料进行了表征分析。混合吸收剂SBA-15(4.3 nm)-50%[Triz]的吸收容量和吸收速率比SBA-15(6.6 nm)-50% [Triz]的分别提高了12.4%和95.1%,这是由于SBA-15(4.3 nm)的孔道长度更短,避免了填充在孔道内的[P66614][Triz] 在反应过程中接触不到CO2,从而比SBA-15(6.6 nm)-50% [Triz]有更多IL反应活性点参与反应。还研究了不同氢烷气速率下SBA-15(4.3 nm)-50% [Triz]对CO2的吸收并与2种吸附动力学模型相拟合,结果表明SBA-15(4.3 nm)-50% [Triz]对CO2的吸收更符合准二级吸附动力学模型,表明吸附过程受化学吸附机理的控制,验证了[P66614][Triz]是通过化学反应脱除CO2。
关键词:离子液体;分子筛; CO2;动力学模型;生物氢烷气
中图分类号:X 511 文献标志码:A 文章编号:0438—1157(2018)06—2526—07
CO2 removal from biohythane by absorption in ionic liquid [P66614][Triz] loaded
on molecular sieve SBA-15
LI Yannan, CHENG Jun, LIU Jianzhong, ZHOU Junhu, CEN Kefa
(State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, Zhejiang, China)
Abstract: A highly efficient CO2 absorbent, ionic liquid (IL) [P66614][Triz], was impregnated on molecular sieves SBA-15 with two different pore diameters for removing CO2 in biohythane. The hybrid absorbents were characterized by N2 adsorption analyzer, scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM). Compared to SBA-15 (6.6 nm) -50% [Triz], SBA-15 (4.3 nm) -50% [Triz] had higher CO2 absorption capacity and absorbing rate by an increase of 12.4% and 95.1%, respectively. The shorter pore length of SBA-15 (4.3 nm) allowed [P66614][Triz] inner pores to contact CO2 during adsorption process, hence SBA-15 (4.3 nm) -50%[Triz] had more IL reactive sites than SBA-15 (6.6 nm) -50% [Triz]. CO2 absorption in SBA-15 (4.3 nm) -50%[Triz] under different hythane gas flowrate was further studied and fitted with two adsorption kinetic models. The results show that CO2 adsorption by SBA-15 (4.3 nm) -50% [Triz] follows better with pseudo-second order adsorption dynamic model, indicating that the adsorption process is controlled by chemical adsorption mechanism and CO2 removal by [P66614][Triz] is a chemical reaction process.
Key words
: ionic liquid; molecular sieve; CO2; kinetic modeling; biohythane 引 言 以CH4、H2、CO2为主的混合气[1-3],即为生物氢烷
气。既实现生物质成分的高效分级利用,又大幅度
提高氢气产率和能量转化效率[4-5]。另有文献[6-7]有机废弃物通过产氢菌、产甲烷菌的代谢得到
证明天然气中添加20%氢气混合成氢烷气(主要成2017-10-12收到初稿,2018-01-07收到修改稿。
Received date:2017-10-12.
联系人:程军。第一作者:李艳南(1989—),女,博士研究生。Corresponding author: CHENGJun,****************.cn
基金项目:国家重点研发计划项目(2016YFE0117900);浙江省重Foundation item:supported by the National Key Research and 点研发计划项目(2017C04001)。
Development Program of China (2016YFE0117900) and the Key Research
and Development Program of Zhejiang Province (2017C04001).
.com.cn. All Rights Reserved.·2527·第6期 www.hgxb.com.cn
分为CH4和H2)可以减少发动机NOx、CO、CH4污染物的排放。所以发酵得到的生物氢烷气需要经过脱碳来提高生物氢烷气热值,以达到车用燃气的要求(车用压缩天然气的国家标准:高位发热量>31.4 MJ/m3),才可以作为氢烷气的替代品,减少环境污染。
虽然目前醇胺水溶液法脱碳[8-10]已经得到广泛认可,但其存在一些不可忽视的问题:吸收剂降解问题、再生时水带来大量的冗余能耗、对设备的腐
蚀问题等[11-13]。
所以学者们一直在尝试寻找新的CO2吸收剂和技术来解决这些问题。离子液体(ILs)[14-17]具有挥发性低、热稳定性高以及对CO2选择性高等优点。而将ILs负载到分子筛上制备的负载型吸收剂不仅可以利用ILs的优点,还可以利用分子筛的孔径结构特点来加速ILs捕集CO2的速率。
陈义峰等[18]采用浸渍-蒸发法将离子液体1-氨丙基-3-甲基咪唑溴盐[APMIm][Br]负载到硅胶表面,讨论了不同IL负载量对CO2吸收能力和速率的影响,并研究了吸收剂再生使用情况。CO2的吸收能力低于0.4 mol CO2/(mol IL),有待提高。Zhu等[19]将两种IL共价负载到多孔SiO2上用以脱碳,对CO2的吸附容量减少,对CO2/N2选择性增加。
基于均相表面扩散模型(HSDM)得到的负载型吸
收剂与多孔SiO2的扩散系数在同一数量级,
比纯的磷基IL的扩散系数约高2~3个数量级。Ruckart等[20]研究了六种离子液体负载到有序介孔分子筛SBA-15上用以吸收CO2,结果表明CASIL-SBA- B4-[TBP][Tau]-50对CO2的吸收容量最高且水蒸气的存在对脱碳效果具有很大的影响。Hiremath等[21]将4种氨基酸型离子液体共价键法负载到介孔氧化硅(OMS)上,其中OMS-IL(Lys)对CO2的捕集效果最好,且较高的CO2浓度和较低的温度都有利于OMS-IL(Lys)对CO2的吸收。Ren等[22]将六种氨基酸离子液体[apaeP444][AA]负载到二氧化硅上吸附/解吸CO2,其中SiO2-[apaeP444][Lys]吸附CO2容量最大。Wang等[23]将氨基酸功能化离子液体[EMIM] [Lys]负载到多孔材料聚甲基丙烯酸甲酯上,得到的 [EMIM][Lys]-PMMA对 CO2的吸附量为73.48 mg/(g吸收剂)。杨娜等[24]利用浸渍法将[NH3P-mim] [BF4]和[MEA]L两种离子液体负载到AC、Al2O3、和MCM-41上,考察了对CO2的吸附性能,确定了[NH3P-mim][BF4]/AC对CO2 的吸附性能最优。并对[NH3P-mim][BF4]/AC考察了不同负载量、不同温度下对CO2的吸附性能,确定了固载离子液体对
CO2的吸附容量随着负载量的增加而增加。刘之琳
等[25]将四种有机胺分别负载到分子筛MCM-41上并研究了它们对CO2的吸附性能和再生性能,其中三种混合吸收剂随着胺分子量增大CO2吸附性能下降且四乙烯五胺TEPA-MCM41 的吸附容量最大,但四种混合吸收剂的再生温度要求160 ℃以上才能达到好的再生性能。Zelenák等[26]、Wang等[27]、Yan等[28]研究了介孔负载材料的孔径、孔体积、孔隙结构对氨基负载的分子筛吸收CO2性能的影响,发现孔径较大或孔体积较大的负载材料制备的混合吸收剂有更大的CO2负载容量。
以上工作虽然涉及多孔载体的孔径、孔体积、孔隙结构对混合吸收剂吸收CO2性能的影响,但有关孔道长度对混合吸收剂吸收CO2性能的影响很少受到关注。本工作中,选择低再生能耗(80 ℃下即可再生)、CO2吸收容量较高[0.95 mol/(mol IL)]、吸
收速率快(在60 ml/min纯CO2下,
1 g IL吸收平衡时间为15 min)、热稳定性高(分解温度>300 ℃)的IL [P66614][Triz][29]作为吸收剂,将其负载到不同孔道长度的介孔SBA-15上研究孔道长度对混合吸收剂吸收CO2的影响。
1 实验部分
1.1 材料
介孔分子筛SBA-15(4.3 nm)购于南京吉仓纳米科技有限公司;SBA-15(6.6 nm)购于杭州纳森美纳米材料有限公司;离子液体[P66614][Triz]和[P66614] [2-Op]由浙江大学化学系提供;无水乙醇(≥99.7%)购于国药试剂网;高纯CO2 (≥99.999%)、模拟生物氢烷气(48% CH4/12% H2/40% CO2)和氢气甲烷混合气(80% CH4/20% H2)来源于杭州今工物资有限 公司。
1.2 SBA-15负载[P66614][Triz]
采用文献[30]中描述的浸渍法将[P66614][Triz]负载于SBA-15(4.3 nm)上。首先将2 g [P66614][Triz]溶于30 g无水乙醇中,用磁力搅拌器搅拌30 min以便于两者混合均匀。然后称量2 g SBA-15(4.3 nm)加入混合液中,在油浴锅80℃下加热2 h,此过程中仍有磁力搅拌。然后将悬浊液倒入烧杯中并在空气干燥箱80℃下挥发去除无水乙醇直至成粉末状态。在真空干燥箱中保存,避免残留微量无水乙醇和避免吸湿空气中的水蒸气。将此吸收剂记为SBA-15(4.3 nm)-50%[Triz]。同样的方法来制备吸收剂SBA-15(6.6 nm)-50%[Triz]和SBA-15(4.3 nm)-50%[2-Op]。
.com.cn. All Rights Reserved. · 2528·
化 工 学 报 第69卷
1.3 SBA-15的表征
SBA-15的微观表面形态使用扫描电子显微镜(SEM,Hitachi SU8010, Japan)。SBA-15内部孔道图2为SBA-15的HRTEM图像,图片显示相对于有规则排列的SBA-15(6.6 nm)长孔道(约800 nm)结构,SBA-15(4.3 nm)的孔道杂乱无章,孔道观察使用的是高倍透射电子显微镜(HRTEM,JEM-2100F, Japan)。N2吸附-解吸研究使用的是全自动比表面积和微孔孔径分析仪AUTOSORB- IQ2-MP(Quantachrome Instruments, USA),77 K下进行N2的物理吸附。 1.4 CO2吸收实验
CO2吸收反应器为自制固定床反应器,其内径为8 mm,长度为8 cm。将约0.5 g(实测质量记为w)的SBA-15(4.3 nm) -50% [Triz]填充到反应器中。每次吸收实验,测试气体通过质量流量计(N2标定)设定为10 ml/min。为了排除氢烷气中CH4和 H2的干扰,每次实验先通入干净的氢气甲烷混合气(80%
CH4/20% H2)5 min,记录此时的质量作为起始质量
w0。然后将通气阀门切换到模拟生物氢烷气(48% CH4/12% H2/40% CO2),每分钟称量混合吸收剂吸
收CO2后的总质量并记录为wt,
每次称量重复两次以减少读数误差,所有实验都是在常温常压下进行。CO2的吸收量为
CO2 uptake = (wt−w0)/w
2 结果与讨论 2.1 样品表征分析
SBA-15的SEM图如图1所示,SBA-15(4.3 nm)的外观接近空心球,在100000倍率下依然不能观察到其介孔孔道,而SBA-15(6.6 nm)的外观类似纤维状,10000倍率下其孔道结构可以清楚地观察到像成束的纤维规则的排列,并且孔道相对弯曲较轻。
图1 两种孔道结构的分子筛SBA-15的SEM图
Fig.1 SEM images of molecular sieves SBA-15 with
different pore structures
长度(约120 nm)也远小于SBA-15(6.6 nm)的孔道长度。
图2 两种孔道结构的分子筛SBA-15的HRTEM图 Fig.2 HRTEM images of molecular sieves SBA-15 with
different pore structures
图3给出了两种SBA-15的孔径分布曲线。其孔径分布曲线是利用Barrett-Joyner-Halenda (BJH)模型根据N2解吸数据得到。SBA-15(4.3 nm)和SBA-15(6.6 nm)的比表面积分别是398.13 m2/g,605.90 m2/g,由Brunauer-Emmett-Teller (BET)方法分析得到,相对压力P/P0范围为0.03~0.3。
图3 两种孔道结构的分子筛SBA-15的孔径分布 Fig. 3 Pore size distribution of molecular sieves SBA-15 with
different pore structures
为了证明离子液体成功地负载到分子筛上,以SBA-15(4.3 nm)-50% [Triz]为例,分析了其负载前后
的傅里叶红外光谱变化,如图4所示。纯IL的特征峰(振动频率为690、2868、2931 cm−1等)与SBA-15(4.3 nm)-50% [Triz]相同频率处的峰相对应, .com.cn. All Rights Reserved.·2529·第6期 www.hgxb.com.cn
图4 分子筛SBA-15(4.3nm)负载离子液体[P66614][Triz]前后
的傅里叶红外光谱图
Fig.4 FTIR spectrum of molecular sieve SBA-15(4.3 nm)
before/after loading with ionic liquid [P66614][Triz]
说明IL成功地负载到分子筛上。
2.2 SBA-15负载[P66614][Triz]对CO2的吸收及结
果讨论
图5为纯CO2气氛下,SBA-15(4.3 nm)-50% [Triz]与SBA-15(6.6 nm)-50% [Triz]对纯CO2吸收容量和速率的动态对比曲线。SBA-15(4.3 nm)-50% [Triz]对CO2的吸收容量为38.9 mg CO2
/(g 吸收剂),
比SBA-15(6.6 nm)
-50% [Triz]的CO2吸收容量[34.6 mg CO2/(g 吸收剂)]增加了12.4%。且5 min时,SBA-15(4.3 nm)-50% [Triz]对CO2的吸收容量已达
到平衡时吸收容量的89%;SBA-15(4.3 nm)-50% [Triz]对CO2的最大吸收速率为8.0 mg CO2/(g 吸收剂·min),约是SBA-15(6.6 nm)-50% [Triz]对CO2最大吸收速率[4.1 mg CO2(g 吸收剂·min)]的2倍。这是由于SBA-15(4.3 nm)的孔道长度更短,避免了反应过程中填充在孔道内的[P66614][Triz]接触不到CO2,有利于更多反应活性点快速参与反应。
为了验证SBA-15(4.3 nm)更适合被选作混合吸收剂的负载材料,选择另一种IL[P66614][2-Op]制备新的吸收剂SBA-15(4.3 nm)-50% [2-Op],并在氢烷气条件下吸收CO2。实验结果与之前的研究工作[31] MCM-41-50% [2-Op]吸收结果进行对比,如图6所示,SBA-15(4.3 nm)-50% [2-Op]的CO2最大吸收速率[10.6 mg/(g·min)]比MCM-41-50% [2-Op]的[6.2 mg/(g·min)]提高了70%,比纯[P66614][2-Op]的提高
了82.8%。此外,
SBA-15(4.3 nm)-50% [2-Op]的CO2吸收容量为37.6 mg/(g 吸收剂)[75.2 mg/(g [2-Op])],比MCM-41-50% [2-Op]的31.4 mg/(g 吸
收剂)[62.8 mg/]g (2-Op])]增加了19.7%,比纯[P66614]
[2-Op]的67.1 mg/(g [2-Op])增加了12%。这是因为负载的离子液体能够分散于分子筛的表面及孔道内,导致更多的离子液体分子暴露于气体,与氢烷
气中CO2反应,
所以负载的离子液体吸收CO2的容量及速率都有所提高。同时,实验结果也表明SBA-15(4.3nm)是一种很好的负载材料。
图5 两种混合吸收剂SBA-15-50% [Triz]对纯CO2的 吸收容量和速率曲线
Fig.5 Absorption capacity and rate dynamics for two kinds of
SBA-15-50% [Triz] under pure CO2 atmosphere
图6 氢烷气气氛下SBA-15(4.3 nm)-50% [2-Op]与文献[31]
中MCM-41-50% [2-Op]对CO2的吸收速率的对比 Fig.6 Comparation of CO2 absorption rate between SBA-15-50% [Triz] and MCM-41-50% [2-Op] in Ref. [31]
under bioythane atmosphere
2.3 SBA-15(4.3 nm)-50%[Triz]的CO2吸附动力学 吸附动力学是评价吸附剂吸附性能的重要指
标之一。本文采用2种吸附动力学模型[32-33],
式(1)和式(2),来拟合不同氢烷气流量时SBA-15(4.3 nm)-50% [Triz]对氢烷气中CO2的吸收曲线,如图7所示。从动力学模型拟合中所得到的参数见表
1。
.com.cn. All Rights Reserved.com.cn. All Rights Reserved.· 2530·
化 工 学 报 第69卷
表1 吸附动力学模型拟合不同流量氢烷气下SBA-15(4.3 nm)-50% [Triz]对CO2吸收曲线的参数 Table 1 Parameters of kinetic models for CO2 absorption over SBA-15 (4.3 nm) -50% [Triz]
Kinetic model Parameter 10 ml/min 20 ml/min 30 ml/min
pseudo-first-order
qe/(mg/g) 30.60(exp.) 34.58(exp.) 36.03(exp.)
30.18(fit) 33.58(fit) 35.27(fit)
k1/(1/min) 0.3626 0.3579 0.4332 R2
0.9992 0.9969 0.9983 pseudo-second-order qe/(mg/g) 30.60(exp) 34.58(exp) 36.03(exp)
32.90(fit) 36.81(fit) 37.61(fit) k2/(g/(mg·min)) 0.0209 0.0177 0.0264 R2
0.9999 0.9995 0.9998
准一级
qt=qe⎡⎣1−exp(−k1t)⎤⎦
(1) 准二级
2
qkt=2qe
1+kt (2) 3qet
式中,k1(min−1)、k2(g/(mg·min))为吸附速率常数;qt(mg/g)和qe(mg/g)分别为给定时间t和饱和时间的CO2吸附能力。
从图7和表1可以看出,对于准二级反应动力学模型,相关系数R2范围为0.9995~0.9999;在研
图7 不同流量氢烷气时SBA-15(4.3 nm)-50% [Triz]对CO2
的吸收曲线及其吸附动力学模型拟合
Fig. 7 CO2 absorption dynamics of SBA-15 (4.3 nm) -50% [Triz] and corresponding fits to three kinetic models at 10
ml/min, 20 ml/min and 30 ml/min
究的氢烷气速率范围内,拟合得到的qe数值与实验数据一致性较好,表示准拟二级反应动力学模型能更好地代表不同流量氢烷气时SBA-15(4.3 nm)-50% [Triz]对CO2的吸收,即SBA-15(4.3 nm)-50% [Triz]对CO2的吸附过程受化学吸附机理的控制,进一步验证了本文采用的[P66614][Triz]是通过化学反应来吸收CO2的。
3 结 论
本文对比了SBA-15(4.3 nm)-50% [Triz]与SBA-15(6.6 nm)-50% [Triz]对纯CO2的吸收情况,发现SBA-15(4.3 nm)-50% [Triz]对CO2的吸收容量和吸收速率都远大于SBA-15(6.6 nm)-50% [Triz],这是因为SBA-15(4.3 nm)的孔道方向杂乱无章,孔道长度更短,避免了反应过程中填充在孔道内的
[P66614][Triz]接触不到CO2,有利于更多反应活性点
·2531·第6期 www.hgxb.com.cn 参与反应。研究表明准拟二级反应动力学模型能更
好地代表不同流量氢烷气时SBA-15(4.3 nm)-50% [Triz]对CO2的吸收,即SBA-15(4.3 nm)-50% [Triz]对CO2的吸附过程受化学吸附机理的控制。 References
[1] DING L K, CHENG J, YUE L C, et al. Fermentative hydrogen and
methane co-production from pretreated Spartina anglica biomass with optimal saccharification effect under acid/alkali-assisted [13] PEARSON P, HOLLENKAMP A F, MEULEMAN E.
Electrochemical investigation of corrosion in CO2 capture plants—influence of amines [J]. Electrochimica Acta, 2013, 110(6): 511-516.
[14] HASIB-UR-RAHMAN M, SIAJ M, LARACHI F. Ionic liquids for
CO2 capture—development and progress [J]. Chemical Engineering and Processing, 2010, 49(4): 313-322.
[15] ZHANG X P, ZHANG X C, DONG H F, et al. Carbon capture with
ionic liquids: overview and progress [J]. Energy & Environmental Science, 2012, 5(5): 6668-6681.
com.cn. All Rights Reserved.steam/microwave heating and enzymolysis[J]. Energy Conversion and Management, 2016, 127: 554-560.
[2] DING L K, CHENG J, QIAO D, et al. Investigating hydrothermal
pretreatment of food waste for two-stage fermentative hydrogen and methane co-production[J]. Bioresource Technology, 2017, 241: 491-499.
[3] CHENG J, DING L K, LIN R C, et al. Physicochemical
characterization of typical municipal solid wastes for fermentative hydrogen and methane co-production[J]. Energy Conversion and Management, 2016, 117: 297-304.
[4] XIA A, CHENG J, DING L K, et al. Improvement of the energy
conversion efficiency of Chlorella pyrenoidosa biomass by a three-stage process comprising dark fermentation, photofermentation, and methanogenesis [J]. Bioresource Technology, 2013, 146(146C): 436-443.
[5] XIA A, CHENG J, DING L K, et al. Enhancement of energy
production efficiency from mixed biomass of Chlorella pyrenoidosa and cassava starch through combined hydrogen fermentation and
methanogenesis [J]. Applied Energy, 2014, 120(120): 23-30.
[6] MA F H, WANG Y F, DING S F, et al. Twenty percent
hydrogen-enriched natural gas transient performance research [J]. International Journal of Hydrogen Energy, 2009, 34(15): 6523-6531. [7] MA F H, WANG M Y, JIANG L, et al. Performance and emission
characteristics of a turbocharged CNG engine fueled by hydrogen-enriched compressed natural gas with high hydrogen ratio [J]. International Journal of Hydrogen Energy, 2010, 35(12): 6438-6447.
[8] HADRI N E, DANG V Q, GOETHEER E L V, et al. Aqueous amine
solution characterization for post-combustion CO2 capture process [J]. Applied Energy, 2017, 185: 1433-1449.
[9] BEMHARDSEN I M, KNUUTILA H K. A review of potential amine
solvents for CO2 absorption process: absorption capacity, cyclic capacity and pKa [J]. International Journal of Greenhouse Gas Control, 2017, 61: 27-48.
[10] VAIDYA P D, KENIG E Y. CO2-alkanolamine reaction kinetics: a
review of recent studies [J]. Chemical Engineering & Technology, 2010, 30(11): 1467-1474.
[11] SHI H C, NAAMI A, IDEM R, et al. International catalytic and
noncatalytic solvent regeneration during absorption-based CO2 capture with single and blended reactive amine solvents [J]. International Journal of Greenhouse Gas Control, 2014, 26(7): 39-50. [12] REY A, GOUEDARD C, LEDIRAC N, et al. Amine degradation in
CO2 capture(Ⅱ): New degradation products of MEA. Pyrazine and alkylpyrazines: analysis, mechanism of formation and toxicity [J]. International Journal of Greenhouse Gas Control, 2013, 19(11): 576-583.
[16] WANG C M, LUO X Y, ZHU X, et al. The strategies for improving
carbon dioxide chemisorption by functionalized ionic liquids [J]. RSC Advances, 2013, 3(36): 15518-15527.
[17] 刘维伟, 胡松, 陈文, 等. 功能型离子液体的合成表征及CO2吸收
性能 [J]. 化工学报, 2012, 63(1): 139-145.
LIU W W, HU S, CHEN W, et al. Synthesis and identification of functional ionic liquids and research on its performance of CO2 absorption [J]. CIESC Journal, 2012, 63(1): 139-145.
[18] 陈义峰, 王昌松, 丁键, 等. 负载[APMIm][Br]离子液体吸收CO2
的性能[J]. 化工学报, 2014, 65(5): 1716-1720.
CHEN Y F, WANG C S, DING J, et al. CO2 absorption properties of supported [APMIm][Br] [J]. CIESC Journal, 2014, 65(5): 1716-1720. [19] ZHU J M, XIN F, HUANG J H, et al. Adsorption and diffusivity of
CO2 in phosphonium ionic liquid modified silica [J]. Chemical Engineering Journal, 2014, 246(246): 79-87.
[20] RUCKART K N, O’BRIEN R A, WOODARD S M, et al. Porous
solids impregnated with task-specific ionic liquids as composite sorbents [J]. Journal of Physical Chemistry C, 2015, 119(35): 20681-20697.
[21] HIREMATH V, JADHAV A H, LEE H, et al. Highly reversible CO2
capture using amino acid functionalized ionic liquids immobilized on mesoporous silica [J]. Chemical Engineering Journal, 2016, 287: 602-617.
[22] REN J, WU L B, LI B G. Preparation and CO2 sorption/desorption of
N-(3-aminopropyl) aminoethyl tributylphosphonium amino acid salt ionic liquids supported into porous silica particles [J]. Industrial & Engineering Chemistry Research, 2012, 51(23): 7901-7909.
[23] WANG X F, AKHMEDOV N G, DUAN Y H, et al. Amino
acid-functionalized ionic liquid solid sorbents for post-combustion carbon capture [J]. ACS Applied Materials & Interfaces, 2013, 5(17): 8670-8677.
[24] 杨娜, 王睿. 固载氨基化离子液体的制备及其对CO2的吸附性能
[J]. 化工学报, 2013, 64(S1): 128-132.
YANG N, WANG R. Preparation of supported amino-ionic liquid and its CO2 adsorption capacity[J]. CIESC Journal, 2013, 64(S1): 128-132.
[25] 刘之琳, 滕阳, 张锴, 等. 不同有机胺修饰MCM-41的CO2吸附性
能和热稳定性[J]. 燃料化学学报, 2013, 41(4): 469-476.
LIN Z L, TENG Y, ZHANG K, et al. CO2 adsorption properties and thermal stability of different amine-impregnated MCM-41 materials[J]. Journal of Fuel Chemistry and Technology, 2013, 41(4): 469-476.
[26] ZELENAK V, BADANICOVA M, HALAMOVA D, et al.
Amine-modified ordered mesoporous silica: effect of pore size on carbon dioxide capture [J]. Chemical Engineering Journal, 2008, 144(2): 336-342.
· 2532·
化 工 学 报 第69卷
[27] WANG L, YAO M, HU X, et al. Amine-modified ordered
mesoporous silica: the effect of pore size on CO2 capture performance [J]. Applied Surface Science, 2015, 324: 286-292.
[28] YAN X, ZHANG L, ZHANG Y, et al. Amine-modified SBA-15:
effect of pore structure on the performance for CO2 capture [J]. Industrial & Engineering Chemistry Research, 2011, 50(6): 3220-3226.
[29] WANG C M, LUO X Y, LUO H M, et al. Tuning the basicity of ionic
liquids for equimolar CO2 capture [J]. Angewandte Chemie International Edition, 2011, (21): 4918-4922.
Engineering Chemistry Research, 2013, 52(11): 4221-4228.
[31] CHENG J, LI Y, HU L, et al. CO2 adsorption performance of ionic
liquid [P66614][2-Op] loade onto molecular sieve MCM-41 compared to pure ionic liquid in biohythane/pure CO2 atmospheres [J]. Energy & Fuels, 2016, 30(4): 3251-3256.
[32] WANG X, GUO Q, KONG T. Tetraethylenepentamine-modified
MCM-41/silica gel with hierarchical mesoporous structure for CO2 capture [J]. Chemical Engineering Journal, 2015, 273: 472-480. [33] WANG X, CHEN L, GUO Q. Development of hybrid
50[30] FENG X X, HU G S, HU X, et al. Tetraethylenepentamine-modified
siliceous mesocellular foam (MCF) for CO2 capture [J]. Industrial &
amine-functionalized MCM-41 sorbents for CO2 capture [J]. Chemical Engineering Journal, 2015, 260: 573-581.
.com.cn. All Rights Reserved.
因篇幅问题不能全部显示,请点此查看更多更全内容