您的当前位置:首页正文

“三角形内角和”教学设计

2020-05-01 来源:榕意旅游网

  教学目标:

  1、让学生通过量、剪、拼、折等活动,主动探究推导出三角形内角和是180度,并运用所学知识解决简单的实际问题。

  2、让学生在动手获取知识的过程中,培养学生的创新意识、探索精神和实践能力。并通过动手操作把三角形内角和转化为平角的探究活动,向学生渗透"转化"数学思想。

  3、在学生亲自动手和归纳中,使学生体验成功的喜悦,激发学生主动学习数学的兴趣。

  教学重点:

  让学生经历"三角形内角和是180°"这一知识的形成、发展和应用的全过程。

  教学难点:

  通过小组内量一量、折一折、撕一撕等活动,验证"三角形的内角和是180°。"

  教师准备:

  4组学具、课件

  学生准备:

  量角器、练习本

  教学过程:

  一、兴趣导入,揭示课题

  1、导入:"同学们,这几天我们都在研究什么知识?能说说你们都认识了哪些三角形吗?它们各有什么特点?"

  (生出示三角形并汇报各类三角形及特点)

  2、今天老师也带来了两个三角形,想不想看看?(播放大屏幕)。"咦,不好,它们怎么吵起来了?快听听它们为什么吵起来了?""哦,它们为了三个内角和的大小而吵起来。"(设置矛盾,使学生在矛盾中去发现问题、探究问题。)

  3、我们来帮帮它们好吗?

  4、那么什么叫内角啊?你们明白吗?谁来说说?来指指。

  你能标出三角形的三个角吗?(生快速标好)

  数学中把三角形的这三个角称为三角形的内角,三个内角加起来就叫内角和。这节课我们就来研究一下"三角形的内角和"(课件片头1)

  "同学们,用什么方法能知道三角形的内角和?"

  二、猜想验证,探究规律 (动手操作,探究新知)

  1.量角求和法证明:

  先听合作要求:拿出准备的一大一小的两个三角形,现在我们以小组为单位来量一量它们的内角,注意分工:最好两个人 量,一人记录,一人计算,看哪一小组完成的好?

  (1)学生听合作要求后分组合作,将各种三角形的内角和计算出来并填在小组活动记录表中。(观察哪组配合好)。

  (2)指名汇报各组度量和计算内角和的结果。

  (3)观察:从大家量、算的结果中,你发现什么?

  归纳:大家算出的三角形内角和都等于或接近180°。

  (5)思考、讨论:

  通过测量计算,我们发现三角形的内角和不一定等于180度,因为是测量所以能有误差,那么还有更好的方法能验证呢?

  大家讨论讨论。

  现在各小组就行动起来吧,看哪些小组的方法巧妙。看看能得出什么结论?

  看同学们拼得这样开心,老师也想拼拼,行吗?演示课件。

  看老师最终把三个角拼成了一个什么角?平角。是多少角?

  "180°是一个什么角?想一想,怎样可以把三角形的三个内角拼在一起?如果拼成一个180 度的平角就可以验证这个结论,对吗?"(课件3)

  现在,我们可验证三角形的内角和是(180度)?

  2.那么对任意三角形都是这个结论?请看大屏幕。

  演示锐角三角形折角。 (三个顶点重合后是一个平角,折好后是一个长方形。)

  你们想不想去试一试。

  3.小组探究活动,师巡视过程中加入探究、指导(如生有困难,师可引导、有可能出现折不到一起的情况,可演示以帮助学生)

  4."你通过哪种三角形验证(钝角、锐角、直角逐一汇报)",生边出示三角形边汇报。(如有实物投影,直接在实物投影上展示最好,也可用大三角形示范,可随机改变顺序)

  a、验证直角三角形的内角和

  折法1中三个角拼在一起组成了一个什么角?我们可以得出什么结论?

  引导生归纳出:直角三角形的内角和是180°

  折法2 我们还可以得出什么结论?

  引导生归纳出:直角三角形中两个锐角的和是90°。

  (即:不必三个角都折,锐角向直角方向折,两个锐角拼成直角与直角重合即可)

  b、验证锐角、钝角三角形的内角和。

  归纳:锐角、钝角三角形的内角和也是180°。

  放手发动学生独立完成 ,逐一种类汇报 师给予鼓励

  三、总结规律

  刚才,我们将直角三角形、锐角三角形、钝角三角形的三个内角量、剪、撕,能不能给三角形内角下一个结论呢?(生:三角形的内角和是180°)对!不论是哪种三角形,不论大小!我们可以得出一个怎样的结论?

  (三角形的内角和是180°。)

  (教师板书:三角形的内角和是180°学生齐读一遍。)

  为什么用测量计算的方法不能得到统一的结果呢?

  (量的不准。有的量角器有误差。)

  老师的大三角形内角和大小三角形内角和大呀?(一样大)首尾呼应

  四、应用新知,知识升华。

  (让学生体验成功的喜悦)

  现在,我们已经知道了三角形的内角和是180°,它又能帮助我们解决那些问题呢?

  (课件5……)

  在一个三角形中,有没有可能有两个钝角呢?

  (不可能。)

  追问:为什么?

  (因为两个锐角和已经超过了180°。)

  有两个直角的一个三角形

  (因为三角形的内角和是180°,在一个三角形中如果有两个直角,它的内角和就大于180°。)

  问:那有没有可能有两个锐角呢?

  (有,在一个三角形中最少有两个内角是锐角。)

  1、 看图求出未知角的度数。(知识的直接运用,数学信息很浅显)

  2、做一做:

  在一个三角形中,∠1=140度, ∠3=35度,求∠2的度数、

  3、27页第3题(数学信息较为隐藏和生活中的实际问题)

  4、思考题

  五、总结

  今天,我们在研究三角形的内角和时经历了猜想、验证、得出结论的过程,并且运用这一结论解决了一些问题。人们在进行科学研究中,常常都要经历这样的过程,同时,它也是一种科学的研究方法。

  板书设计:

  三角形内角和

  量一量 拼一拼 折一折

  三角形内角和是180°

因篇幅问题不能全部显示,请点此查看更多更全内容