您的当前位置:首页正文

做初中数学题的技巧方法

2022-05-19 来源:榕意旅游网
Word文档

做初中数学题的技巧方法

大题是高考数学科目的重要组成部分,也是比分占得很重的一部分,考生需要把握解题技巧,才能正确答题,那么接下来给大家共享一些关于做初中数学题 值得留意的是:在列出全部需要商议 的可能性之后,要仔细审查是否每种可能性都会存在,是否有需要舍去的。

最常见的就是一元二次方程假如有两个不等实根,那么我们就要看看是不是的技巧〔方法〕,希望对大家有所关怀。 做初中数学题要分类商议 题

分类商议 在数学题中经常以最终压轴题的方式出现,以下几点是需要大家留意分类商议 的:

1、熟知直角三角形的直角,等腰三角形的腰与角以及圆的对称性,根据图形的特殊性质,找准商议 对象,逐一解决。在探讨等腰或直角三角形存在时,确定要依据确定的原则,不要遗漏,最终要综合。

2、商议 点的位置确定要看清点所在的范围,是在直线上,还是在射线或者线段上。

3、图形的对应关系多涉及到三角形的全等或相像问题,对其中可能出现的有关角、边的可能对应状况加以分类商议 。

4、代数式变形中假如有确定值、平方时,里面的数开出来要留意正负号的取舍。

5、考查点的取值状况或范围。这部分多是考查自变量的取值范围的分类,解题中应十分留意性质、定理的使用条件及范围。

6、函数题目中假如说函数图象与坐标轴有交点,那么确定要商议 这个交点是和哪一个坐标轴的哪一半轴的交点。

7、由动点问题引出的函数关系,当运动方式转变后(比方从一条线段移动到另一条线段)时,所写的函数应当进行分段商议 。

这两个根都能保存。 做初中数学题四个秘诀

切入点一:做不出、找相像,有相像、用相像

压轴题牵涉到的学问点较多,学问转化的难度较高。学生往往不知道该怎样入手,这时往往应根据题意去查找相像三角形。 切入点二:构造定理所需的图形或基本图形

在解决问题的过程中,有时添加关心线是必不行少的,几乎都遵循这样一个原则:构造定理所需的图形或构造一些常见的基本图形。 切入点三:紧扣不变量

在图形运动转变时,图形的位置、大小、方向可能都有所转变,但在此过程中,往往有某两条线段,或某两个角或某两个三角形所对应的位置或数量关系不发生转变。

切入点四:在题目中查找多解的信息

图形在运动转变,可能满足条件的情形不止一种,也就是通常所说的两解或多解,如何避开漏解也是一个令考生头痛的问题。

其实多解的信息在题目中就可以找到,这就需要我们深度的挖掘题干,事实上就是反复认真的审题。 做初中数学题答题技巧

1、定位精确防止 “捡芝麻丢西瓜”

1 / 3

Word文档

在心中确定要给压轴题或几个“难点”一个时间上的限制,假如超过你设置的上限,必需要停止,回头认真检查前面的题,尽量要保证选择、填空万无一失, (二)几何型综合题

先给定几何图形,根据已知条件进行计算,然后有动点(或动线段)运动,对前面的解答题尽可能的检查一遍。 2、解数学压轴题做一问是一问

第一问对绝大多数同学来说,不是问题;假如第一小问不会解,切忌不行轻易放弃第二小问。

过程会多少写多少,因为数学解答题是按步骤给分的,字迹要工整,布局要合理;

尽量多用几何学问,少用代数计算,尽量用三角函数,少在直角三角形中使用相像三角形的性质。 做初中数学题压轴题技巧

纵观全国各地的中考数学试卷,数学综合题关键是第22题和23题,我们不妨把它分为函数型综合题和几何型综合题。 (一)函数型综合题

是先给定直角坐标系和几何图形,求(已知)函数的解析式(即在求解前已知函数的类型),然后进行图形的商量,求点的坐标或商量图形的某些性质。 初中已知函数有:

①一次函数(包括正比例函数)和常值函数,它们所对应的图像是直线; ②反比例函数,它所对应的图像是双曲线;

③二次函数,它所对应的图像是抛物线。求已知函数的解析式主要方法是待定系数法,关键是求点的坐标,而求点的坐标基本方法是几何法(图形法)和代数法(解析法)。

应产生线段、面积等的转变。

求对应的(未知)函数的解析式(即在没有求出之前不知道函数解析式的形式是什么)和求函数的定义域,最终根据所求的函数关系进行探究商量,一般有: 在什么条件以下图形是等腰三角形、直角三角形、四边形是菱形、梯形等; 探究两个三角形满足什么条件相像等; 探究线段之间的位置关系等;

探究面积之间满足确定关系求x的值等和直线(圆)与圆的相切时求自变量的值等。

求未知函数解析式的关键是列出包含自变量和因变量之间的等量关系(即列出含有x、y的方程),变形写成y=f(x)的形式。

一般有直接法(直接列出含有x和y的方程)和复合法(列出含有x和y和第三个变量的方程,然后求出第三个变量和x之间的函数关系式,代入消去第三个变量,得到y=f(x)的形式),当然还有参数法,这个已超出初中数学教学要求。 找等量关系的途径在初中主要有利用勾股定理、平行线截得比例线段、三角形相像、面积相等方法。求定义域主要是查找图形的特殊位置(极限位置)和根据解析式求解。

而最终的探究问题千变万化,但少不了对图形的分析和商量,用几何和代数的方法求出x的值。

在解数学综合题时我们要做到:数形结合记心头,大题小作来转化,潜在条件不能忘,化动为静多画图,分类商议 要严密,方程函数是工具,计算推理要

2 / 3

Word文档

严谨,创新品质得提高。

做初中数学题的技巧方法相关〔文章〕: ★ 初中数学解题技巧与方法 ★ 初中数学题中的小技巧整理 ★ 初中数学学习方法以及技巧 ★ 做数学选择题的十种技巧

★ 初中数学学习方法总结,数学的六大方法技巧! ★ 初中数学解题方法大汇总 ★ 初中数学题中的小技巧

★ 初中数学里常用的十种经典解题方法 ★ 做题技巧数学初中解题方法总结

3 / 3

因篇幅问题不能全部显示,请点此查看更多更全内容