[3]Y.Kawauchi,I.Makoto,andT.Fukuda,“Aprincipleofdistributedde-cisionmakingofcellularroboticsystem(CEBOT),”inProc.IEEEInt.Conf.Robot.Autom.,Piscataway,NJ:IEEEPress,1993,pp.833–838.[4]M.Yim,K.Roufas,D.Duff,Y.Zhang,C.Eldershaw,andS.B.Homans,
“Modularreconfigurablerobotsinspaceapplications,”Auton.Robots,vol.14,no.2/3,pp.225–237,2003.
[5]M.Yim,D.G.Duff,andK.D.Roufas,“PolyBot:Amodularreconfig-urablerobot,”inProc.IEEEInt.Conf.Robot.Autom.,vol.1,Piscataway,NJ:IEEEPress,2000,pp.514–520.
[6]A.Castano,W.M.Shen,andP.Will,“CONRO:Towardsdeployable
robotswithinter-robotsmetamorphiccapabilities,”Auton.Robots,vol.8,no.3,pp.309–324,2000.
[7]S.Hirose,T.Shirasu,andE.F.Fukushima,“Proposalforcooperative
robot“Gunryu”composedofautonomoussegments,”Robot.Auton.Syst.,vol.17,pp.107–118,1996.
[8]H.B.Brown,J.M.V.Weghe,C.A.Bererton,andP.K.Khosla,“Millibot
trainsforenhancedmobility,”IEEE/ASMETrans.Mechatron.,vol.7,no.4,pp.452–461,Dec.2002.
[9]R.Damoto,A.Kawakami,andS.Hirose,“Studyofsuper-mechano
colony:Conceptandbasicexperimentalset-up,”Adv.Robot.,vol.15,no.4,pp.391–408,2001.
[10]K.Motomura,A.Kawakami,andS.Hirose,“Developmentofarm
equippedsinglewheelrover:Effectivearm-posture-basedsteeringmethod,”Auton.Robots,vol.18,no.2,pp.215–229,2005.
[11]S.Murata,E.Yoshida,A.Kamimura,H.Kurokawa,K.Tomita,
andS.Kokaji,“M-tran:Self-reconfigurablemodularroboticsystem,”IEEE/ASMETrans.Mechatron.,vol.7,no.4,pp.431–441,Dec.2002.[12]W.M.Shen,M.Krivokon,H.Chiu,J.Everist,M.Rubenstein,and
J.Venkatesh,“Multimodelocomotionforreconfigurablerobots,”Auton.Robots,vol.20,no.2,pp.165–177,2006.
[13]M.Yim,W.M.Shen,B.Salemi,D.Rus,M.Moll,H.Lipson,E.Klavins,
andG.S.Chirikjian,“Modularself-reconfigurablerobotsystems,”IEEERobot.Autom.Mag.,vol.14,no.1,pp.43–52,Mar.2007.
[14]D.RusandM.Vona,“Crystallinerobots:Self-reconfigurationwithcom-pressibleunitmodules,”Auton.Robots,vol.10,no.1,pp.107–124,2001.
[15]P.White,V.Zykov,J.Bongard,andH.Lipson,“Threedimensional
stochasticreconfigurationofmodularrobots,”inProc.Robot.Sci.Syst.,Cambridge,MA:MITPress,2005,pp.161–168.[16]C.JonesandM.J.Matari´c,“Fromlocaltoglobalbehaviorinintelli-gentself-assembly,”inProc.IEEEInt.Conf.Robot.Autom.,vol.1,Los
Alamitos,CA:IEEEComput.Soc.Press,2003,pp.721–726.
[17]E.Klavins,R.Ghrist,andD.Lipsky,“Agrammaticalapproachtoself-organizingroboticsystems,”IEEETrans.Autom.Control,vol.51,no.6,pp.949–962,Jun.2006.
[18]W.M.Shen,P.Will,A.Galstyan,andC.M.Chuong,“Hormone-inspired
self-organizationanddistributedcontrolofroboticswarms,”Auton.Robots,vol.17,no.1,pp.93–105,2004.
[19]A.L.Christensen,R.O’Grady,andM.Dorigo,“Morphologycontrolina
multirobotsystem,”IEEERobot.Autom.Mag.,vol.14,no.4,pp.18–25,Dec.2007.
[20]F.Mondada,L.M.Gambardella,D.Floreano,S.Nolfi,J.-L.Deneubourg,
andM.Dorigo,“Thecooperationofswarm-bots:Physicalinteractionsincollectiverobotics,”IEEERobot.Autom.Mag.,vol.12,no.2,pp.21–28,Jun.2005.
[21]A.L.Christensen,“Efficientneuro-evolutionofhole-avoidanceandphoto-taxisforaswarm-bot,”D.E.A.thesis,Inst.RecherchesInterdisciplinairesD´ev.Intell.Artif.(IRIDIA),Univ.LibredeBruxelles,Brussels,Belgium,Tech.Rep.TR/IRIDIA/2005-14,Oct.2005.
Image-BasedVisualServoControloftheTranslation
KinematicsofaQuadrotorAerialVehicle
OdileBourquardez,RobertMahony,NicolasGuenard,Franc¸oisChaumette,TarekHamel,andLaurentEck
Abstract—Inthispaper,weinvestigatearangeofimage-basedvisual
servocontrolalgorithmsforregulationofthepositionofaquadrotoraerialvehicle.Themostpromisingcontrolalgorithmshavebeensuccessfullyimplementedonanautonomousaerialvehicleanddemonstrateexcellentperformance.
IndexTerms—Aerialroboticvehicle,visualservoing.
I.INTRODUCTION
Visualservoalgorithmshavebeenextensivelydevelopedintheroboticsfieldoverthelasttenyears[7],[10],[19],[23].Visualservocontroltechniqueshavealsobeenappliedrecentlytoalargevarietyofreduced-scaleaerialvehicles,suchasquadrotors[1],[25],helicopters[2],[22],[26],[29],airships[4],[30],andairplanes[5],[24].Inthispaper,weconsidervisualservocontrolofaquadrotoraerialvehicle.Muchoftheexistingresearchinvisualservocontrolofaerialrobots(andparticularly,autonomoushelicopters)hasusedposition-basedvi-sualservotechniques[1],[2],[22],[25]–[27],[29].Theestimatedposecanbeuseddirectlyinthecontrollaw[1],oraspartofaschemefusingvisualdataandinertialmeasurements[29].Inthispaper,wedonotdealwithposeestimation,butconsiderimage-basedvisualservo(IBVS),similartotheapproachconsideredin[4],[17],and[30].
ThesystemdynamicsissometimesexplicitlytakenintoaccountinIBVS.Thisstrategyhasbeenappliedforroboticmanipulators[9],[12],[20]andforaerialvehicles[15],[30].Anotherpopularapproach(asusuallydoneformostroboticsystemssuchasrobotarms,mobilerobots,etc.)isbasedonseparatingthecontrolproblemintoaninnerloopandanouterpositioncontrolloop.Asforhelicopters,theinnerat-titudeloopisrunathighgainusinginputsfrominertialsensors,rategy-rometers,andaccelerometersacquiredathighdatarate,whiletheouterloopisrunatlowgainusingvideoinputfromthecamera[26],[27].Theouter(visualservo)loopprovidessetpointsfortheinnerattitudeloopandclassicaltime-scaleseparationandhigh-gainargumentscanbeusedtoensurestabilityoftheclosed-loopsystem[1],[11],[15],[27].
ManuscriptreceivedJune17,2008;revisedDecember4,2008.Firstpub-lishedFebruary2,2009;currentversionpublishedJune5,2009.ThispaperwasrecommendedforpublicationbyAssociateEditorP.RivesandEditorW.K.Chunguponevaluationofthereviewers’comments.ThisworkwassupportedbytheCentreNationaldelaRechercheScientifique(CNRS)undertheProjectRobotiqueetEntit´esArtificielles(ROBEA)–RobvolintandtheInternationalProgramsforScientificCooperation(PICS)betweenFranceandAustraliaonvisualservo-controlofunmannedaerialvehicles.
O.BourquardezandF.ChaumettearewiththeInstitutdeRechercheenIn-formatiqueetSyst`emesAl´eatoires(IRISA)–CentreNationaldelaRechercheScientifique(CNRS)andl’InstitutNationaldeRechercheenInformatiqueetenAutomatique(INRIA),35042Rennes,France(e-mail:odile.bourquardez@voila.fr;francois.chaumette@irisa.fr).
R.MahonyiswiththeDepartmentofEngineering,AustralianNationalUni-versity,Canberra,A.C.T.0200,Australia(e-mail:robert.mahony@anu.edu.au).
`l’EnergieAtomiqueN.GuenardandL.EckarewiththeCommissariata
(CEA)/List,92265Fontenay-aux-Roses,France(e-mail:nicolas.guenard@cea.fr;laurent.eck@cea.fr).
T.HameliswiththeLaboratoired’Informatique,SignauxetSyst`emesdeSophiaantipolis(I3S),Universit´edeNiceSophia-Antipolis(UNSA)–CentreNationaldelaRechercheScientifique(CNRS),06903SophiaAntipolis,France(e-mail:thamel@i3s.unice.fr).
Colorversionsofoneormoreofthefiguresinthispaperareavailableonlineathttp://ieeexplore.ieee.org.
DigitalObjectIdentifier10.1109/TRO.2008.2011419
1552-3098/$25.00©2009IEEE
Authorized licensed use limited to: UR Rennes. Downloaded on June 16, 2009 at 05:06 from IEEE Xplore. Restrictions apply.
744IEEETRANSACTIONSONROBOTICS,VOL.25,NO.3,JUNE2009
Inthispaper,wetaketheinner/outerloopstabilityforgranted(see[14]fordetails)andconcentrateonthespecificpropertiesoftheouterIBVScontroldesign.Itallowsdesigningkinematiccontrollers,whichgivemanyadvantagesinpractice.Forexample,usinganembeddedcamerathatsendstheimagestoagroundstationimpliestimedelaysandthenaslowimage-basedcontrolloop.Itisthusinterestingtohavealowerlevellooptoensurethestabilizationofthesystem.Then,anotherad-vantagetoconsiderkinematiccontrolistoenableeasierreuseoftheIBVSscheme,sinceitisnotclosetothematerialequipmentoftheaerialvehicle.Inthispaper,severalcontrolschemesareproposed,compared,andthemostpromisingonesareshowntobestableinpracticeandtoprovidesatisfactorybehavior.
Followingearlierwork[15],[17],[28],wehavechosentousezeroandfirst-orderimagemomentsasprimaryvisualfeaturesforthecontroldesign.PerspectiveprojectionmomentswithsuitablescalingalongwithaclassicalIBVScontroldesignleadtosatisfactorytransientsandasymptoticstabilityoftheclosed-loopsystemwhentheimageplaneremainsparalleltoaplanartarget.However,thesystemresponsemaylackrobustnessforaggressivemaneuvers.Inordertoovercomethisproblem,severalcontrolschemes,basedonsphericalfirst-orderimagemoments,aredesignedandtheirperformanceisanalyzed.Themostpromisingcontrolalgorithmshavebeensuccessfullyimplementedonanautonomousaerialvehicleshowingexcellentperformance.
Thepaperisorganizedasfollows.SectionIIdevelopsaclassicalIBVScontrolschemeusingperspectiveimagemoments.SectionIIIintroducesthedefinitionandpropertiesoffirst-ordersphericalimagemomentsandpresentsarangeofcontrollawsforthetranslationalmotionofthecamerausingthisvisualfeature.SectionIVprovidesananalysisandacomparisonofthecontrollawsproposed.ExperimentalresultsarepresentedinSectionV.
II.PERSPECTIVEPROJECTION
Inthissection,anIBVScontrolforregulationofthetranslationkinematicsofanaerialvehicleispresented.
Inordertoobtainaquasi-linearanddecoupledlinkbetweentheimagespaceandthetaskspace,theimagefeaturesusedareper-spectiveprojectionimagemoments[28].Thevisualfeaturevectors=(xn,yn,an)isdefinedsuchthat[28]
a∗∗
,xn=anxg,an=Zyn=anygawhereaistheareaoftheobjectintheimage,xg,ygitscentroidcoordinates,a∗thedesiredarea,andZ∗thedesireddepthbetweenthecameraandthetarget.Thetimederivativeofsandtherelativemotionbetweenthecameraandtheobjectcanberelatedbytheclassicalequation
˙=Lυυ+Lωω(1)swhereυandωare,respectively,thelinearandangularvelocityofthe
camerabothexpressedinthecameraframe,andwhereLυandLωare,respectively,thepartsoftheinteractionmatrixrelatedtothetransla-tionalandrotationalmotions.Thedesiredimagefeatureisdenotedbys∗,andthevisualerrorisdefinedbye=s−s∗.
ClassicalIBVScontroldesignaimstoimposelinearexponentialstabilityontheimageerrorkinematics[10],[21],[28]toensurean
˙=−λe,withλapositiveexponentialdecoupleddecreasefore(e
gain).Usingetocontrolthetranslationaldegreesoffreedom,theclassicalIBVScontrolinputis
υ=−(Lυ)−1(λe+Lωω),
theobservedvisualdata.Thevisualfeatures=(xn,yn,an)isofparticularinterestsinceLυ=−I3inthecasewherethecameraimageplaneisparalleltothetargetplane[28].Inthatcase,sincethelinkbetweenimagespaceandtaskspaceislinearanddecoupled,thecontrolscheme(2)isknowntoleadtosatisfactoryclosed-loopbehaviorforholonomicrobot[28].Itis,infact,equivalenttoaposition-basedvisualservo,butwithoutanyposeestimationrequired.
Intheapplicationconsidered,thecameraismountedtopointdirectlydownwardinthequadrotorandtheimageandtargetplanearenevermorethanacoupleofdegreesoffset.Asaconsequence,theapproxi-mationLυ≈−I3isvalid.Furthermore,themotionofthequadrotorissmoothandslowandthevalueofLωωissmallcomparedwiththeer-rorλein(2).Thus,areasonableapproximationof(2)forthepurposesofthispaperis
λ>0.(3)υ=λe,Equation(3)doesnotrequiretheestimationofany3-Dparameters
andcanbeimplementedbasedonlyontheobservedimagefeaturess.ThiscontrolwasimplementedontheexperimentalplatformandtheresultsarediscussedinSectionV-B.Thelimitationofthisapproach,however,liesinitsdependenceontheparticulargeometryoftheap-plicationconsideredandtherequirementtoconsideronlysmoothslowtrajectoriesofthevehicle.Ifthevehicleundertakesaggressivema-noeuvres,ortheparalleltargetplaneassumptionisinvalidatedforaparticularapplication,theapproximationLυ≈−I3willfail,andmoreimportantly,theapproximationLωω≈0mayalsofail.Thissecondissueintroducesasignificantdynamicdisturbanceinthesystemre-sponsethatcannotbecancelleddirectlywithouttheriskofintroducingzerodynamiceffectsintotheclosed-loopresponsesimilartothosestudiedinrecentresearch[11],[18].ThepotentiallimitationsoftheclassicalIBVScontroldesignbasedonperspectiveprojectionfeaturesmotivateustoconsideraclassofsphericalprojectionfeaturesandnonlinearcontroldesigntechniques.
III.SPHERICALPROJECTION
A.Modeling
Inthissection,weuseanunnormalizedfirst-ordersphericalimagemomentalongwithaninertialgoalvectortogenerateanimageerror[17].ConsiderapointtargetconsistingofnpointsPicorresponding
sphericalimagesurface.Thetoimagepointspi(i∈(1,...,n))onthe
centroidofatargetisdefinedtobeq=ni=1pi.Thecentroidqisa3-Dvector.Thankstothesphericalcamerageometry,thethirdentryofthecentroidisnonlinearlyrelatedtothedepthofthecamerafromtheobservedtargetconstellation.
Forapointtargetcomprisingafinitenumberofimagepoints,the
˙=kinematicsoftheimagecentroidareeasilyverifiedtobe[17]qi=nπpi
−ω×q−Qυ,whereQ=i=1|Pi|andπp=(I3−pp).Aslongasthereareatleasttwopointspiinimagespace,thematrixQispositivedefinite[17].
Letbdenotethevectorthatdefinesthedirectionofthefixeddesiredsetpointforthevisualfeatureq,expressedinafixedinertialframeFA.Theimage-basederrorconsideredis
δ=q−q∗
(4)
λ>0.(2)
Generally,theinteractiontermsLυandLωdependnonlinearlyonthestateofthesystemandcannotbereconstructedexactlyfrom
whereq∗=Rb,andtherotationmatrixRbetweenthecameraframeFCandthefixedinertialframeFA(seeFig.1)isassumedtobeknown,acommonassumptionwhendealingwiththecontrolofunder-actuatedsystemssuchashelicopters[17].
Thereasonforchoosingtheimageerrorinthismanneristhatitensuresthepassivityproperty.Theimageerrorkinematicsare[17]
˙=δ×ω−Qυ.δ
(5)
Authorized licensed use limited to: UR Rennes. Downloaded on June 16, 2009 at 05:06 from IEEE Xplore. Restrictions apply.
IEEETRANSACTIONSONROBOTICS,VOL.25,NO.3,JUNE2009745
imagefeaturesandthetranslationaldegreesoffreedom.Furthermore,satisfactorybehavioroftheimagefeatureswillautomaticallyinduceanacceptablebehaviorinthetaskspace.
Weproposetoconsideranewimagefeature
f=F(|q|)q0,
withF(|q|)=R|q|n2−|q|2(9)
Fig.1.
CameraframeFC,fixedframeFA,andvisualfeaturesqandq∗.
Itcanbeshownthat|δ|andδ0=Rδareafunctionofpositiononly[6].Thispropertycanbeexploitedtocontrolthetranslationaldynamicsindependentlyoftherotations.B.ProportionalControl
Apureproportionalfeedbackoftheunnormalizedcentroid[17]ensuresglobalasymptoticstability(GAS)property,butinpracticeithasbeenshownin[6]thattaskspaceandimagespacebehaviorarenotacceptable.ThisisduetothefactthattheconvergenceratesaregivenbyQ,andthismatrixisnotwell-conditioned.Thesimplecontrollaw
υ=kδδ,
isthusnotsuitableinpractice.C.PartitionedControl
Asolutionforcompensatingthepoorsensitivityinthepreviouscontroldesignistouseapartitionedapproachbysinglingouttheproblematiccomponentforspecialtreatment[8],[15].
Theideaistoseparatethevisualerrortermintotwocriteriawithdifferentsensitivity.Thenewvisualfeature
δA=δ11+λq∗0δ12
(7)
kδ>0
(6)
whereq0=|qisthenormalizedfirst-ordermomentandF(|q|)repre-q|sentsaroughapproximationoftheactualdepthZfromthegeometriccenterofthetarget.nisthenumberofpointsobservedandRistheapproximateradiusofthetarget.Theerrorδfisdefinedasfollows
δf=f−f∗=F(|q|)q0−F(|q∗|)q∗0.
(10)
˙f=−ω×δf−MQυwhereM(q)=Itcanbeshownthatδ
∂F(|q|)F(|q|)I[6].qq+−qq03000∂|q||q|Itcanbeshownthatf−ξ(whereξrepresentsthecamerapositionwithrespecttothetarget,expressedinthecameraframe)andMQMQ−1[6].Sincef−ξ,anintuitiveideaistochoose
υ=kfδf,
kf>0.
(11)
SinceMQI3,weobtainapproximatelythesameconvergencerateforthecomponentsoftheerror[6].
AswewillseeinSectionV-C2,theexperimentalresultsusingthiscontrollawshowexcellentperformance.Itsadvantageisalsothatitiseasilyimplemented,sincethecontrollawisadirectfunctionofthevisualerrorδf.Furthermore,since(10)hastheadditionalpassivityproperty,itisexpectedtobewell-adaptedforawiderangeofaerialvehiclesandexperimentalconditions.
However,similartotheperspectivemomentscontroldesign,theglobalasymptoticstabilityhasnotbeendemonstrated.E.GASControlLawWithModifiedRescaledImageFeatureInthissection,weattempttodefineanewimagefeatureandcontrollawthatcombinethepropertiesofgoodtransientbehavior,goodlocalexponentialstability,andglobalasymptoticstability.TheapproachtakenistodefineanewscalingfunctionG(|q|)andscaledimagefeature
g=G(|q|)q0,
˙=−ω×g−HQυwithg
(12)
isdefinedbyusingtheconstantλ(chosenasshownin[6]),andthe
followingtwonewerrorterms
δ11=
q∗0
×q,
δ12=
q∗0δ,
with
q∗0
q∗
=∗.|q|Itcanbeshownthatthecontrollaw
υ=kAA(q∗0)δA,
kA>0(8)
∗∗∗
withA(q∗0)=sk(q0)+λq0q0ensuresthatthesystemisGAS[6].
∗
Notethatsk(q∗0)istheskew-symmetricmatrixsuchthatsk(q0)w=q∗0×wforanyvectorw.
Thispartitionedcontrolschemehasbeenusedin[15]bydesigningandexperimentingadynamiccontrolofaquadrotor.AsshowninSectionV-C1,althoughitenablestoensurethedesirableGASpropertyinpractice,thepartitionedcontrolschemecanleadtopoorbehaviorofthesystemassoonasthedistancebetweeninitialanddesiredpositionincreases[6],[15].Inordertoensuregoodbehaviorinpractice,weproposethefollowingcontrollaws.
whereG(|q|)canbechosensothatHinducesgoodpropertiesforasymptoticstabilityoftheresultingcontrollaw.SimilartoSectionIII-DforthederivationofM,wehavetherelationshipbetweenmatrixH∂G(|q|)G(|q|)
andfunctionG(|q|)[6]:H(q)=∂|q|q0q0+|q|I3−q0q0.Theerrorδgisdefinedasfollows
δg=g−g∗=G(|q|)q0−G(|q∗|)q∗0.
Recalling(12),thedynamicsofthiserrorfunctionisgivenby
˙δg=−ω×δg−HQυ,andwecannotethatδgensuresthepas-sivityproperty,asexpectedfromthechoiceofg.
ChoosingthescalefactorG(|q|)=α(|q|)|q|F(|q|),andcontrollaw
H(q)
δg,kg>0(13)υ=kg
α(|q|)2whereα(|q|)issuchthatα(|q∗|)=1[6],ensuresGASandgoodlo-calexponentialstabilityoftheclosed-loopsystem[6].Thenewimagefeatureg=G(|q|)q0,andthepreviousfeaturef=F(|q|)q0arede-signedinthesamemanner:thedirectionofthefeatureisgivenbyq0,andthenormisgivenbythescalingfactorG(|q|)andF(|q|),
D.RescaledImageFeature
Toimprovetherelationshipbetweentaskspacebehaviorandimagespacebehavior,itisnaturaltotrytodetermineanimagefeaturethatisasclosetothe3-Dtranslationbetweenthecameraandthetargetaspossible[28].Suchachoiceleadstoaninteractionmatrixclosetotheidentity,leadingtoalinearanddecoupledlinkbetweenthe
Authorized licensed use limited to: UR Rennes. Downloaded on June 16, 2009 at 05:06 from IEEE Xplore. Restrictions apply.
746IEEETRANSACTIONSONROBOTICS,VOL.25,NO.3,JUNE2009
TABLEI
PROPERTIESOFTHEDIFFERENTCONTROLSCHEMESCONSIDERED
respectively.G(|q|)providesalessaggressivescalingcorrectionthanF(|q|)[6].Thisimprovesthesensitivityoftheimagefeaturetopixelnoiseandimprovesrobustnessoftheclosed-loopsystem.Adisad-vantageofthenewimagefeaturegisthatitisnotascloselylinkedtotheactualtaskspacecoordinatesasthefeaturef(orthe2-Dper-spectivemomentsusedinSectionII).SinceF(|q|)isanapproxi-mationofthedepth,thefeaturef=F(|q|)q0isdirectlyrelatedtothe3-Dposition.Incaseofthefeatureg,usingthescalefactorG(|q|)=α(|q|)|q|F(|q|),therelationshipbetweenimagespaceandtaskspaceisnonlinear.Thisleadstosomedegradationoftheglobaltransientbehaviorforcertaininitialconditions.However,thisissuehaslimitedeffectontheobservedperformanceoftheclosed-loopsysteminpractice.AsshowninSectionV-C3,thepracticalresultsareexcellent.
IV.ANALYSIS
ArangeofIBVSschemeshasbeenpresentedinSectionsIIandIII.TableIgivessummaryofthepropertiesforeachcontrolschemeintermsofstability,transientbehavior,linearity,andpassivity.
Inpractice,twoofthemostimportantpropertiesaregoodtran-sientconditioning(directconvergenceofallelementsofpositionintaskspacewithoutanyobserveddivergenceorpeakingtransients),andbalancedlocalexponentialstability(equalasymptoticrateofconver-genceinallaxesofthepositionintaskspace).Threecontrolschemespresentinterestingproperties:theperspectiveimagemoments(controlscheme1),therescaledproportionalfeedback(controlscheme4),andthemodifiedrescaledcontrol(controlscheme5).Amongthesethreebestcontrollaws,eachonehasadvantagesanddrawbacks,andnooneisgloballybetterthantheothers.Inthenextsection,thesethreecontrollawsarevalidatedandcomparedthroughexperimentalresults.
V.EXPERIMENTALRESULTSANDCOMPARISON
OFSOMECONTROLLAWS
Inthissection,weprovideexperimentalverificationoftheperfor-manceoftheproposedcontrolschemesonanaerialroboticvehicle.Theexperimentswereundertakenonaquadrotoraerialvehicle.Thetaskconsideredistostabilizethevehiclewithrespecttoaspecifiedtarget.A.ExperimentalConditions
1)PrototypeDescription:Theunmannedaerialvehicleusedfortheexperimentationisaquadrotor,whichisanomnidirectionalverti-caltakeoffandlanding(VTOL)vehicleideallysuitedforstationaryandquasi-stationaryflightconditions.Itconsistsoffourfixed-pitchpropellerslinkedtoanelectricalmotorateachextremityofacrossframe(seeFig.2).Thevehicleisequippedwithanavionicsstackincludinganinertialmeasurementunit(IMU)supplyingthevehicleattitudeandacontrollerboard[15].Theembeddedloopallowingtheattitudestabilizationrunsat166Hzandthetimetoreachanattitudeor-derisabout300ms.Anumericalwirelesslinkallowsthetransmission
Fig.2.Experimentalsystem.
Fig.3.Low-andhigh-levelcontrolloops.
oftheattitudecommandbetweenthequadrotorandagroundstation(Pentium4)withatimetransmissionof110ms.Acamerasituatedbelowthequadrotorisembeddedandobservesatargetontheground,consistingoffourblackmarksontheverticesofaplanarrectangle(30cm×40cm)(seeFig.2).Awirelessanaloglinktransmitscam-eraimagestothegroundstation.Allthevisualservocontrolstestedareimplementedonthegroundstationatthesampletimeof60ms.Consequently,consideringthehighsamplingratelowlevelandthelowsamplingratehighlevel,wecanassumethatthelowlevelandthehighlevelcontrolareentirelydecoupled.Ademonstrationbasedonsingularperturbationsandsimilarargumentsasin[13]canshowthestabilityoftheentireclosed-loopsystem.A3-DestimationofthevehiclepositionwithrespecttothetargetisalsoobtainedbyfusingthedataoftheembeddedIMUandthevisualdatainaparticlefilter[3].Thisestimateisusedtoprovideanestimateofgroundtruthforthe3-Dbehaviorofthevehicleandtoprovideanestimateofthelinearvelocityofthevehiclethatisusedbytheinnerloopcontrolleroftheairframedynamics[14](seeFig.3).Inthispaper,only2-DvisualinformationisusedintheouterIBVScontrolloopforpositionregulation.
2)ExperimentalProtocol:Inordertocomparetheproposeddif-ferentkinematicvisualservocontrollers,theinitialconditionsoftheexperimentswerechosenidentically.Foreachexperiment,thequadro-torwasservo-controlledtoaspecificinitialpositionusingastandardstate-spacecontrollerderivinginformationfromthetaskspaceposi-tionestimate.Whenthevehicleisstabilizedatthisposition,thevisualcontrolisinitiatedandthe3-Dposition,obtainedfromtheparticlefilter,isrecorded.Thisprotocolensuresthattheflightconditionsare
Authorized licensed use limited to: UR Rennes. Downloaded on June 16, 2009 at 05:06 from IEEE Xplore. Restrictions apply.
IEEETRANSACTIONSONROBOTICS,VOL.25,NO.3,JUNE2009747
Fig.4.Resultsobtainedforυ=0.4e:timeevolution(inseconds)oftherealpositioninthetaskspace(inmeters),(a)ofthemvelocityoutputofthevisualservocontrolυ(inmetersperseconds)(b).Theevolutionofthevisualerrorisplottedon(c),andthetrajectoryofthefourblackmarksintheimageplaneareplottedin(d).
Fig.5.
Resultsobtainedforυ=kAA(q∗0)δA,configuredasFig.4.
thesameandallowsthecomparisonbetweenthedifferentcontrollers.
Thevelocitydemandwasalsosaturatedat20cm/stoensuretheve-hicleremainsinquasi-stationaryflightregime[16].Consideringtimeslatencyandthehighsamplingofthehigh-levelcontroller,onlylowgainshavebeenused.Thetechniqueusedtotunethesegainsconsistsinincreasingthegaintoincreasethebandwidthandstoppingjustbe-foretheUAVbecomesunstable.Then,thesegainshavebeenreducedinordertohaveanexponentialconvergenceinabout10s.
TheinitialpositionofthevehicleisX0.7m,Y−0.65m,Z2m,anditsdesiredpositionisX0m,Y0m,Z1.4m(whichisabovethecenterofthetargetat1.4mheightoftheground).TheasymptoticvalueforthematrixQisQ∗=diag(2.35,2.36,0.057)andwehaveb(0,0,3.96).
Inthefollowingsubsections,fourkinematicimage-basedcontrolschemesforthetranslationalmotionofthequadrotorareconsidered.Foreachexperiment,the3-Dpositionofthecamerainthetaskspacereferenceframeisdepicted,alongwiththevelocityoutputofthevisualservocontrollaw.Theevolutionofthevisualerrorconsideredisalsodepicted,aswellasthetrajectoryofthefourblackmarksintheimageplane.
Fig.6.Resultsobtainedforυ=0.47δf,configuredasFig.4.
C.SphericalImageMoments
1)PartitionedControl:Withthepartitionedcontrollawusingde-compositionatthesetpointandsphericalimagemoments(controllaw3),thevisualerrorcomponentsarequiteperturbedbutconverge[seeFig.5(c)].Theproblemisthatthecontrollawisnotadequatelyfarfromthedesiredposition.Consequently,wecanseethattheconver-gencerateisnotthesameonthethreecomponentsoftheposition,andZcomponentisnotsuitable[seeFig.5(a)].Moreover,thevelocityout-putofthevisualservocontrolisverydisturbed,evenafterconvergence[t>25s,seeFig.5(b)].
2)ProportionalFeedback:Therescaledproportionalfeedbackus-ingsphericalimagemoments(controllaw4)hasthesamedesirableimagefeaturepropertiesascontrollaw1.Thepracticalresultsareverysatisfactory(seeFig.6)andsimilartotheresultsobtainedwithcontrollaw1.
B.PerspectiveImageMoments
Theclassicalperspectiveimagemomentscontroller(controllaw1)providesalinearcorrespondencebetweentheimagespaceandtaskspaceaslongastherelativerotationbetweenimageandtargetplaneissmall.Theresultingclosed-loopsystemresponseisexpectedtobesatisfactorybothintransientperformanceandasymptoticconvergenceandinbothimageandtaskspace.Thepracticalresultsusingthequadro-torareverysatisfactory(seeFig.4)undertheconsideredexperimentalconditions.However,asaconsequenceofthelimitingassumptionsontherotation,thesystemisneitherGASnorpassive.Moreover,itisexpectedthatstrongrotationalmotionwillsignificantlydisturbtheperformanceofthesystem.
Authorized licensed use limited to: UR Rennes. Downloaded on June 16, 2009 at 05:06 from IEEE Xplore. Restrictions apply.
748IEEETRANSACTIONSONROBOTICS,VOL.25,NO.3,JUNE2009
TABLEII
RMSEOFTHEVELOCITIESFOREACHCONTROLLAW
συ=
222συ+συ+συalongwithσυK=XYZ
i(υKi−υ¯K)2,forK∈{X,Y,Z}andwhereυ¯KistheaverageofυKbetween10
and25s.
AscanbeseeninTableII,thenoisemeasuredattheoutputofallcontrollawsisverysimilar.Thethreecontrollawshaveverysimilarbehaviorwithrespecttonoise.
VI.CONCLUSION
Thispaperhasinvestigatedasuiteofimage-basedkinematicvisualservocontrolschemestocontrolaquadrotor.Usingthewell-knownperspectiveimagemomentstodesignaclassicalIBVStranslationalcontrollawleadstogoodsystembehaviorintheexperimentalstud-iesundertaken.However,thiscontrolschemedoesnotensureglobalasymptoticstabilityorpassivityoftheclosed-loopsystem,bothprop-ertiesthatwebelievewillbeimportantforthedevelopmentoffullydynamicIBVScontrolschemesinthefuture.First-ordersphericalimagemomentsalongwithaninertialgoalvectorallowustode-signtranslationalcontrollawsindependentfromtherotationmotion.Globalasymptoticstabilityisobtainedbyusingthesevisualfeaturesandasimpleproportionalfeedback,butthebehaviorontheZ-axisisnotacceptable.Arangeofcontrollawshasbeenproposedinordertoimprovethebehaviorofthesystem.Themostpromisingapproachinvestigatedinvolvesrescalingthesphericalimagemomentstoobtainanimagefeaturethatminimizesthesensitivityinthedepthaxis.Theperspectiveimagemomentscontroldesign,aswellasthreeofthecon-trollawsusingsphericalimagemomentswereimplementedonthequadrotor.Inpracticeandasexpected,threecontrolalgorithmsleadtoacceptablebehaviorofthesystem.
REFERENCES
[1]E.Altu˘g,J.P.Ostrowski,andC.J.Taylor,“Controlofaquadrotorheli-copterusingdualcameravisualfeedback,”Int.J.Robot.Res.,vol.24,
no.5,pp.329–341,2005.
[2]O.Amidi,T.Kanade,andK.Fujita,“Avisualodometerforautonomous
helicopterflight,”J.Robot.Auton.Syst.,vol.28,pp.185–193,Aug.1999.
[3]S.Arulampalam,S.Maskell,N.J.Gordon,andT.Clapp,“Atutorial
onparticlefiltersforon-linenon-linear/non-gaussianBayesiantracking,”IEEETrans.SignalProcess.,vol.50,no.2,pp.174–188,Feb.2002.[4]J.R.Azinheira,P.Rives,J.R.H.Carvalho,G.F.Silveira,E.C.dePaiva,
andS.S.Bueno,“Visualservocontrolforthehoveringofanoutdoorroboticairship,”inProc.IEEEInt.Conf.Robot.Autom.,Washington,DC,May2002,vol.3,pp.2787–2792.
[5]O.BourquardezandF.Chaumette,“Visualservoingofanairplanefor
auto-landing,”inIEEE/RSJInt.Conf.Intell.RobotsSyst.,IROS2007,SanDiego,CA,Oct.,pp.1314–1319.
[6]O.Bourquardez,R.Mahony,N.Guenard,F.Chaumette,T.Hamel,and
L.Eck.(2007,Jul.).Kinematicvisualservocontrolofaquadrotoraerialvehicle.IRISA,Rennes,France,Tech.Rep.1858[Online].Available:http://www.irisa.fr/lagadic/publi/year/2007-fra.html
[7]F.ChaumetteandS.Hutchinson,“Visualservocontrol,PartI:Basic
approaches,”IEEERobot.Autom.Mag.,vol.13,no.4,pp.82–90,Dec.2006.
[8]P.CorkeandS.A.Hutchinson,“Anewpartitionedapproachtoimage-basedvisualservocontrol,”IEEETrans.Robot.Autom.,vol.17,no.4,pp.507–515,Aug.2001.
Fig.7.
Resultsobtainedforυ=0.3α(|q|)2δg,configuredasFig.4.
H(q)
Infact,therescaledvisualfeaturef=F(|q|)q0isveryclosetothe3-Dposition,analogouslytothevisualfeaturesusedincontrollaw1.Thecontrollawsareasimpleproportionalfeedbackinthetwocases.Theadvantageofthesphericalimagemomentsisthattheyensurethepassivityproperty,andshouldbemorerobusttoaggressivemaneuversofanaerialvehicleaswellasleadingmorenaturallytoafulldynamicIBVScontroldesign.Apotentialproblem,however,istherequirementtoestimatethecameraattitudeinordertoreconstructtheimage-basederrorterm.ThereisnoformalproofofGASforcontrollaw4;however,duetothenaturalstructureoftheimagefeature,weexpectthatthedomainofstabilityforthiscontrollawwillbesufficientlylargesothatunstablebehaviorwillnotbeencounteredinpractice.
3)GASControlLaw:Thelastsuitablecontrollaw(5)isbasedonamodifiedrescaledvisualfeature,inordertoensureGAS.ThiscontrollawprovidestheguaranteeofGASthatismissingincontrollaw4.Itsonlydrawbackisthatthevisualfeatureisnolongerlinearlyrelatedtothe3-Dpositionandthismayleadtoslightlydegradedtransientresponseintaskspace.
AscanbeseeninFig.7,thiscontrolschemeleadstoverysatisfactorybehavior:equalconvergenceratesofthevisualerrorcomponents,andequalconvergenceratesinthetaskspace.Moreover,intheconsideredexperiment,thetransientbehaviorisacceptable.D.NoiseSensitivity
Atfirstglance,theresults(seeFigs.4,6,and7)forthethreesuitablecontrolschemesareverysimilar.
Apotentialproblemwiththecontrollaws4and5isthattherotationmatrixRbetweenthecameraframeandtheinertialframehastobeestimated.However,thisestimationdoesnotseemtointroducenoise,delay,oranysignificantperturbationsinpractice(compareFig.4withFigs.6and7).
Tobetterunderstandthenoisesensitivityofeachcontrolscheme,wehavecomputedtheroot-mean-squareerror(RMSE)oftheveloc-itydemandovertheperiodbetween10and25s,duringwhichpe-riodallthreeclosed-loopsystemsarestabilizedinaneighborhoodofthesetpoint.Notethattogetridoftheeffectofthegains,wecon-siderthevelocityoutputwithoutthegainsλ,kf,andkg.Wecompute
Authorized licensed use limited to: UR Rennes. Downloaded on June 16, 2009 at 05:06 from IEEE Xplore. Restrictions apply.
IEEETRANSACTIONSONROBOTICS,VOL.25,NO.3,JUNE2009749
[9]P.I.CorkeandM.C.Good,“Dynamiceffectsinvisualclosed-loop
systems,”IEEETrans.Robot.Autom.,vol.12,no.5,pp.671–683,Oct.1996.
[10]B.Espiau,F.Chaumette,andP.Rives,“Anewapproachtovisualservoing
inrobotics,”IEEETrans.Robot.Autom.,vol.8,no.3,pp.313–326,Jun.1992.
[11]E.Frazzoli,M.A.Dahleh,andE.Feron,“Real-timemotionplanning
foragileautonomousvehicles,”J.Guid.ControlDyn.,vol.25,no.1,pp.116–129,2002.
[12]J.GangloffandM.deMathelin,“Visualservoingofa6DOFmanipulator
forunknown3Dprofilefollowing,”IEEETrans.Robot.Autom.,vol.18,no.4,pp.511–520,Aug.2002.[13]N.Guenard,“Optimisationetimpl´ementationdeloisdecommandeem-barqu´eespourlat´el´eop´erationintuitivedemicrodronesa´eriensX4-Flyer,”
Ph.D.dissertation,Universit´edeNiceSophiaAntipolis,Nice,France,2007.
[14]N.Guenard,T.Hamel,andL.Eck,“Controllawfortheteleoperation
ofanunmannedaerialvehicleknownasanX4-flyer,”inProc.IEEE/RSJInt.Conf.Intell.RobotsSyst.,Beijing,China,Oct.2006,pp.3249–3254.[15]N.Guenard,T.Hamel,andR.Mahony,“Apracticalvisualservocontrol
foraunmannedaerialvehicle,”IEEETrans.Robot.,vol.24,no.2,pp.331–340,Apr.2008.
[16]N.Guenard,T.Hamel,V.Moreau,andR.Mahony,“Designofacontroller
allowedtheintuitivecontrolofanX4-flyer,”presentedattheInt.IFACSymp.RobotControl,Unive.Bologna,Bologna,Italy,Sep.2006.
[17]T.HamelandR.Mahony,“Visualservoingofanunderactuateddynamic
rigid-bodysystem:Animagebasedapproach,”IEEETrans.Robot.Au-tom.,vol.18,no.2,pp.187–198,Apr.2002.
[18]T.HamelandR.Mahony,“Imagebasedvisualservo-controlforaclass
ofaerialroboticsystems,”Automatica,vol.43,no.11,pp.1975–1983,Nov.2007.
[19]K.HatanoandK.Hashimoto,“Image-basedvisualservousingzoom
mechanism,”inProc.SICE2003Annu.Conf.,Aug.4–6,vol.3,pp.2443–2446.
[20]R.Kelly,R.Carelli,O.Nasisi,B.Kuchen,andF.Reyes,“Stablevi-sualservoingofcamera-in-handroboticsystems,”IEEE/ASMETrans.Mechatronics,vol.5,no.1,pp.39–48,Mar.2000.
[21]E.Malis,F.Chaumette,andS.Boudet,“21/2Dvisualservoing,”IEEE
Trans.Robot.Autom.,vol.15,no.2,pp.238–250,Apr.1999.[22]K.Nordberg,P.Doherty,G.Farneb¨ack,P.-E.Forss´en,G.Granlund,
A.Moe,andJ.Wiklund,“VisionforaUAVhelicopter,”presentedattheIEEE/RSJInt.Conf.Intell.RobotsSyst.,WorkshopAerialRobot.,Lausanne,Switzerland,Oct.2002,pp.xxxx.
[23]R.Pissard-GibolletandP.Rives,“Applyingvisualservoingtechniques
tocontrolofamobilehand-eyesystem,”inProc.IEEEInt.Conf.Robot.Autom.,Nagasaki,Japan,1995,pp.166–171.
[24]P.RivesandJ.R.Azinheira,“Visualauto-landingofanautonomous
aircraft,”INRIA,SophiaAntipolis,France,Tech.Rep.4606,Nov.2002.[25]H.Romero,R.Benosman,andR.Lozano,“Stabilizationandlocationofa
fourrotorhelicopterapplyingvision,”inProc.Amer.ControlConf.,ACC2006,Minneapolis,MN,Jun.,pp.3930–3936.
[26]S.Saripalli,J.F.Montgomery,andG.S.Sukhatme,“Visually-guided
landingofanunmannedaerialvehicle,”IEEETrans.Robot.Autom.,vol.19,no.3,pp.371–381,Jun.2003.
[27]O.Shakernia,Y.Ma,T.Koo,andS.Sastry,“Landinganunmannedair
vehicle:Visionbasedmotionestimationandnonlinearcontrol,”AsianJ.Control,vol.1,no.3,pp.128–145,Sep.1999.
[28]O.TahriandF.Chaumette,“Point-basedandregion-basedimagemoments
forvisualservoingofplanarobjects,”IEEETrans.Robot.,vol.1,no.6,pp.1116–1127,Dec.2005.
[29]A.D.Wu,E.N.Johnson,andA.A.Proctor,“Vision-aidedinertialnavi-gationforflightcontrol,”presentedattheAIAAGuid.,Navigat.,ControlConf.Exhib.,SanFrancisco,CA,Aug.2005.
[30]H.ZhangandJ.P.Ostrowski,“Visualservoingwithdynamics:Control
ofanunmannedblimp,”inProc.IEEEInt.Conf.Robot.Autom.,ICRA1999,Detroit,MI,May,vol.1999,pp.618–623.
QualitativeVision-BasedPathFollowing
ZhichaoChenandStanleyT.Birchfield,SeniorMember,IEEE
Abstract—Wepresentasimpleapproachforvision-basedpathfollowingforamobilerobot.Baseduponanovelconceptcalledthefunnellane,thecoordinatesoffeaturepointsduringthereplayphasearecomparedwiththoseobtainedduringtheteachingphaseinordertodeterminetheturningdirection.Increasedrobustnessisachievedbycouplingthefeaturecoordi-nateswithodometryinformation.Thesystemrequiresasingleoff-the-shelf,forward-lookingcamerawithnocalibration(eitherexternalorinternal,in-cludinglensdistortion).Implicitcalibrationofthesystemisneededonlyintheformofasinglecontrollergain.Thealgorithmisqualitativeinnature,requiringnomapoftheenvironment,noimageJacobian,nohomogra-phy,nofundamentalmatrix,andnoassumptionaboutaflatgroundplane.Experimentalresultsdemonstratethecapabilityofreal-timeautonomousnavigationinbothindoorandoutdoorenvironmentsandonflat,slanted,androughterrainwithdynamicoccludingobjectsfordistancesofhun-dredsofmeters.Wealsodemonstratethatthesameapproachworkswithwide-angleandomnidirectionalcameraswithonlyslightmodification.IndexTerms—Control,featuretracking,mobilerobotnavigation,vision-basednavigation.
I.INTRODUCTION
Route-basedknowledge,inwhichthespatiallayoutofanenviron-mentisrecordedfromtheperspectiveofaground-levelobserver,isanimportantcomponentofhumanandanimalnavigationsystems[31].Inthisrepresentation,navigatingfromonelocationtoanotherinvolvescomparingcurrentvisualinputswithasequenceofviewscapturedalongthepathinapreviousinstance.Applicationsthatwouldbene-fitfromsuchapath-followingcapabilityincludecourieranddeliveryrobots[4],robotictourguides[32],orreconnaissancerobotsfollowingascout[7].
Oneapproachtopathfollowingisvisualservoing,inwhichtherobotiscontrolledtoalignthecurrentimagewithareferenceim-age,bothtakenbyanonboardcamera[14].Suchanapproachgener-allyemploysaJacobiantorelatethecoordinatesofworldpointstotheirprojectedimagecoordinates[5],ahomographyorfundamentalmatrixtorelatethecoordinatesbetweenimages[20],[27],[29],[36],orbundleadjustmenttominimizethereprojectionerrorovermulti-pleimageframes[28].Asaresult,thecamerausuallymustbecali-brated[5],[27],[28],[36],andevenuncalibratedsystemsrequirelens
ManuscriptreceivedJanuary14,2008;revisedSeptember20,2008.FirstpublishedApril14,2009;currentversionpublishedJune5,2009.ThispaperwasrecommendedforpublicationbyAssociateEditorJ.D.TardosandEditorL.Parkeruponevaluationofthereviewers’comments.Thisworkwassup-portedinpartbyaPh.D.FellowshipfromtheNationalInstituteforMedicalInformatics.
TheauthorsarewiththeDepartmentofElectricalandComputerEngineering,ClemsonUniversity,Clemson,SC29634USA(e-mail:zhichac@clemson.edu;stb@clemson.edu).
Thispaperhassupplementarydownloadablemultimediamaterialavailableathttp://ieeexplore.ieee.org,providedbytheauthor.Thematerialincludesthevideo(“ramp.avi”)thatshowsthemobilerobotfollowingapredeterminedpath.Thefourquadrantsareasfollows:(Topleft):Livevideofromtheonboardcam-eraduringthereplayphase.Redsquaresindicatefeatures,withgreenoutlinesindicatingfeaturesthatguidetherobottotheright,andyellowoutlinesindicatingfeaturesthatguidetherobottotheleft.(Topright):Themilestoneimagecapturedduringtheteachingphase.(Bottomleft):Therobotascapturedbyanoffboardvideocamera.(Bottomright):Top-downviewofthepathtraveledbytherobot(white:teaching,red:replay).ThevideoisanAVIfilethatplaysunderWin-dowsMediaPlayer11(2006),aswellasearlierversionssuchasWindowsMediaPlayer6.4(1999),onWindowsXP.Thesizeis8.35MB.Additionalvideosmaybefoundathttp://www.ces.clemson.edu/∼stb/research/mobilerobot.Contactstb@clemson.eduforfurtherquestionsaboutthiswork.DigitalObjectIdentifier10.1109/TRO.2009.2017140
1552-3098/$25.00©2009IEEE
Authorized licensed use limited to: UR Rennes. Downloaded on June 16, 2009 at 05:06 from IEEE Xplore. Restrictions apply.
因篇幅问题不能全部显示,请点此查看更多更全内容