您的当前位置:首页正文

高三数学工作总结范文

2022-11-28 来源:榕意旅游网

  ①正棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高)。

  ②正棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形,正棱锥的高、侧棱、侧棱在底面内的射影也组成一个直角三角形。

  ⑶特殊棱锥的顶点在底面的射影位置:

  ①棱锥的侧棱长均相等,则顶点在底面上的射影为底面多边形的外心。

  ②棱锥的侧棱与底面所成的角均相等,则顶点在底面上的射影为底面多边形的外心。

  ③棱锥的各侧面与底面所成角均相等,则顶点在底面上的射影为底面多边形内心。

  ④棱锥的顶点到底面各边距离相等,则顶点在底面上的射影为底面多边形内心。

  ⑤三棱锥有两组对棱垂直,则顶点在底面的射影为三角形垂心。

  ⑥三棱锥的三条侧棱两两垂直,则顶点在底面上的射影为三角形的垂心。

  ⑦每个四面体都有外接球,球心0是各条棱的中垂面的交点,此点到各顶点的距离等于球半径;

  ⑧每个四面体都有内切球,球心是四面体各个二面角的平分面的交点,到各面的距离等于半径。

  [注]:

  i、各个侧面都是等腰三角形,且底面是正方形的棱锥是正四棱锥。(×)(各个侧面的等腰三角形不知是否全等)

  ii、若一个三角锥,两条对角线互相垂直,则第三对角线必然垂直。

  简证:AB⊥CD,AC⊥BD

  BC⊥AD。令得,已知则。

  iii、空间四边形OABC且四边长相等,则顺次连结各边的中点的四边形一定是矩形。

  iv、若是四边长与对角线分别相等,则顺次连结各边的中点的四边是一定是正方形。

  简证:取AC中点,则平面90°易知EFGH为平行四边形

  EFGH为长方形。若对角线等,则为正方形。

因篇幅问题不能全部显示,请点此查看更多更全内容