发现公司里的大数据开发挣得很多,想转行,

发布网友 发布时间:2022-04-24 08:07

我来回答

7个回答

热心网友 时间:2022-04-09 07:21

转行这个词汇,一直是职场上此起彼伏的一个热门话题,相信很多朋友都想过或已经经历过转行。工作可谓是我们生存乃至生活的主要收入来源,谁都希望拥有一份高薪又稳定的工作,以此来改善自己的生活和实现自己的大大小小的梦想!但又担心转行后的工作待遇达不到自己的预期,顾虑重重……

不少想进入大数据分析行业的零基础学员经常会有这样一些疑问:大数据分析零基础应该怎么学习?自己适合学习大数据分析吗?人生,就是在不断地做选择,然后在这个选择过程中成长,让自己从一棵小树苗变成参天大树。就是我们每个对大数据充满幻想终于下定决心行动的学员的选择,我们给了自己4个月的时间,想要在大数据分析这个领域汲取养分,让自己壮大成长。

【明确方向】

通过国家的战略规划,看到BAT的大牛们都在大数据行业布局,新闻媒体追捧这大数据分析行业的项目和热点,我想如果我还没有能力判断的时候,跟着国家*和互联网大佬们的步调走,这应该是错不了的。

【付诸行动】

明确了方向之后,我就整装待发,刚开始是在网络上购买了很多的视频教程,也买了很多书籍,但是最大的问题就在于,我不知道怎么入手,没关系,有信心有耐心肯定能战胜困难,我坚持了一个月,学习的节奏越来越乱,陆陆续续出现了很多的问题,没人指导,请教了几个业内的朋友,但对方工作繁忙,问了几次之后就不好意思了,自学陷入了死循环。

意识到我学习效率的低下,以及无人指导的问题想想未来的康庄大道,咬咬牙告诉自己,一定好好好学,不然就浪费太多时间最后还会是一无所获。最后找到组织(AAA教育)一起学习进步!

大数据分析零基础学习路线,有信心能坚持学习的话,那就当下开始行动吧!

一、大数据技术基础

1、linux操作基础

linux系统简介与安装

linux常用命令–文件操作

linux常用命令–用户管理与权限

linux常用命令–系统管理

linux常用命令–免密登陆配置与网络管理

linux上常用软件安装

linux本地yum源配置及yum软件安装

linux防火墙配置

linux高级文本处理命令cut、sed、awk

linux定时任务crontab

2、shell编程

shell编程–基本语法

shell编程–流程控制

shell编程–函数

shell编程–综合案例–自动化部署脚本

3、内存数据库redis

redis和nosql简介

redis客户端连接

redis的string类型数据结构操作及应用-对象缓存

redis的list类型数据结构操作及应用案例-任务调度队列

redis的hash及set数据结构操作及应用案例-购物车

redis的sortedset数据结构操作及应用案例-排行榜

4、布式协调服务zookeeper

zookeeper简介及应用场景

zookeeper集群安装部署

zookeeper的数据节点与命令行操作

zookeeper的java客户端基本操作及事件监听

zookeeper核心机制及数据节点

zookeeper应用案例–分布式共享资源锁

zookeeper应用案例–服务器上下线动态感知

zookeeper的数据一致性原理及leader选举机制

5、java高级特性增强

Java多线程基本知识

Java同步关键词详解

java并发包线程池及在开源软件中的应用

Java并发包消息队里及在开源软件中的应用

Java JMS技术

Java动态代理反射

6、轻量级RPC框架开发

RPC原理学习

Nio原理学习

Netty常用API学习

轻量级RPC框架需求分析及原理分析

轻量级RPC框架开发

二、离线计算系统

1、hadoop快速入门

hadoop背景介绍

分布式系统概述

离线数据分析流程介绍

集群搭建

集群使用初步

2、HDFS增强

HDFS的概念和特性

HDFS的shell(命令行客户端)操作

HDFS的工作机制

NAMENODE的工作机制

java的api操作

案例1:开发shell采集脚本

3、MAPREDUCE详解

自定义hadoop的RPC框架

Maprece编程规范及示例编写

Maprece程序运行模式及debug方法

maprece程序运行模式的内在机理

maprece运算框架的主体工作流程

自定义对象的序列化方法

MapRece编程案例

4、MAPREDUCE增强

Maprece排序

自定义partitioner

Maprece的combiner

maprece工作机制详解

5、MAPREDUCE实战

maptask并行度机制-文件切片

maptask并行度设置

倒排索引

共同好友

6、federation介绍和hive使用

Hadoop的HA机制

HA集群的安装部署

集群运维测试之Datanode动态上下线

集群运维测试之Namenode状态切换管理

集群运维测试之数据块的balance

HA下HDFS-API变化

hive简介

hive架构

hive安装部署

hvie初使用

7、hive增强和flume介绍

HQL-DDL基本语法

HQL-DML基本语法

HIVE的join

HIVE 参数配置

HIVE 自定义函数和Transform

HIVE 执行HQL的实例分析

HIVE最佳实践注意点

HIVE优化策略

HIVE实战案例

Flume介绍

Flume的安装部署

案例:采集目录到HDFS

案例:采集文件到HDFS

三、流式计算

1、Storm从入门到精通

Storm是什么

Storm架构分析

Storm架构分析

Storm编程模型、Tuple源码、并发度分析

Storm WordCount案例及常用Api分析

Storm集群部署实战

Storm+Kafka+Redis业务指标计算

Storm源码下载编译

Strom集群启动及源码分析

Storm任务提交及源码分析

Storm数据发送流程分析

Storm通信机制分析

Storm消息容错机制及源码分析

Storm多stream项目分析

编写自己的流式任务执行框架

2、Storm上下游及架构集成

消息队列是什么

Kakfa核心组件

Kafka集群部署实战及常用命令

Kafka配置文件梳理

Kakfa JavaApi学习

Kafka文件存储机制分析

Redis基础及单机环境部署

Redis数据结构及典型案例

Flume快速入门

Flume+Kafka+Storm+Redis整合

四、内存计算体系Spark

1、scala编程

scala编程介绍

scala相关软件安装

scala基础语法

scala方法和函数

scala函数式编程特点

scala数组和集合

scala编程练习(单机版WordCount)

scala面向对象

scala模式匹配

actor编程介绍

option和偏函数

实战:actor的并发WordCount

柯里化

隐式转换

2、AKKA与RPC

Akka并发编程框架

实战:RPC编程实战

3、Spark快速入门

spark介绍

spark环境搭建

RDD简介

RDD的转换和动作

实战:RDD综合练习

RDD高级算子

自定义Partitioner

实战:网站访问次数

广播变量

实战:根据IP计算归属地

自定义排序

利用JDBC RDD实现数据导入导出

WorldCount执行流程详解

4、RDD详解

RDD依赖关系

RDD缓存机制

RDD的Checkpoint检查点机制

Spark任务执行过程分析

RDD的Stage划分

5、Spark-Sql应用

Spark-SQL

Spark结合Hive

DataFrame

实战:Spark-SQL和DataFrame案例

6、SparkStreaming应用实战

Spark-Streaming简介

Spark-Streaming编程

实战:StageFulWordCount

Flume结合Spark Streaming

Kafka结合Spark Streaming

窗口函数

ELK技术栈介绍

ElasticSearch安装和使用

Storm架构分析

Storm编程模型、Tuple源码、并发度分析

Storm WordCount案例及常用Api分析

7、Spark核心源码解析

Spark源码编译

Spark远程debug

Spark任务提交行流程源码分析

Spark通信流程源码分析

SparkContext创建过程源码分析

DriverActor和ClientActor通信过程源码分析

Worker启动Executor过程源码分析

Executor向DriverActor注册过程源码分析

Executor向Driver注册过程源码分析

DAGScheler和TaskScheler源码分析

Shuffle过程源码分析

Task执行过程源码分析

五、机器学习算法

1、python及numpy库

机器学习简介

机器学习与python

python语言–快速入门

python语言–数据类型详解

python语言–流程控制语句

python语言–函数使用

python语言–模块和包

phthon语言–面向对象

python机器学习算法库–numpy

机器学习必备数学知识–概率论

2、常用算法实现

knn分类算法–算法原理

knn分类算法–代码实现

knn分类算法–手写字识别案例

lineage回归分类算法–算法原理

lineage回归分类算法–算法实现及demo

朴素贝叶斯分类算法–算法原理

朴素贝叶斯分类算法–算法实现

朴素贝叶斯分类算法–垃圾邮件识别应用案例

kmeans聚类算法–算法原理

kmeans聚类算法–算法实现

kmeans聚类算法–地理位置聚类应用

决策树分类算法–算法原理

决策树分类算法–算法实现

时下的大数据分析时代与人工智能热潮,相信有许多对大数据分析师非常感兴趣、跃跃欲试想着转行的朋友,但面向整个社会,最不缺的其实就是人才,对于是否转行大数据分析行列,对于能否勇敢一次跳出自己的舒适圈,不少人还是踌躇满志啊!毕竟好多决定,一旦做出了就很难再回头了。不过如果你已经转行到大数据分析领域,就不要后悔,做到如何脱颖而出才是关键。因此本文给出一些建议,针对想要转行大数据分析行列且是零基础转行的小伙伴们,希望对你们有所裨益,也希望你们将来学有所成,不后悔,更不灰心!

相关推荐:

《转行大数据分析师后悔了》、《ui设计培训四个月*大爆料》、《零基础学大数据分析现实吗》、《大数据分析十八般工具》

热心网友 时间:2022-04-09 08:39

您好:

大数据技术前景我们是毋庸置疑的,而对于学习更是争先恐后。在这些人中,不乏有已经在IT圈混迹好几年的程序员,自然也有初出茅庐的零基础小白。说实话,大数据不比编程学习,还是需要一定的基础的,时间起码需要半年左右。
想要成为一个优秀的大数据人才并不容易,你不仅需要系统的学习理论知识,熟练掌握技能技巧,还需要具备一定的开发经验,而这些仅靠自学是远远不够的,比较好的方式就是参加专业学习。希望可以帮到你。

热心网友 时间:2022-04-09 10:14

理工程师是职称,不需要考试,只要工作年限到了就可以评,大专要两年吧。 这两个都有用啊,最好是都弄上。

热心网友 时间:2022-04-09 12:05

大数据的开发也是需要一定基础的,你可以试试。

热心网友 时间:2022-04-09 14:13

建议就是如果决定要学Hadoop开发一定要坚持下去,不能半途而废。大数据人才现在确实很缺,我们公司就有2个空缺一直招不到人。八斗学院的课程设置还不错,公司的招聘要求里提到的技术他们都讲到了,挺适合学习转型的。

热心网友 时间:2022-04-09 16:38

大数据岗位高薪清单对于求职者来说,大数据只是所从事事业的一个方向,而职业岗位则是决定做什么事?大数据从业者/求职者可以根据自身所学技术及兴趣特征,选择一个适合自己的大数据相关岗位。下面为大家介绍十种与大数据相关的热门岗位。
1 ETL研发企业数据种类与来源的不断增加,对数据进行整合与处理变得越来越困难,企业迫切需要一种有数据整合能力的人才。ETL开发者这是在此需求基础下而诞生的一个职业岗位。ETL人才在大数据时代炙手可热的原因之一是:在企业大数据应用的早期阶段,Hadoop只是穷人的ETL
2 Hadoop开发随着数据规模不断增大,传统BI的数据处理成本过高企业负担加重。而Hadoop廉价的数据处理能力被重新挖掘,企业需求持续增长。并成为大数据人才必须掌握的一种技术。
3 可视化工具开发可视化开发就是在可视化工具提供的图形用户界面上,通过操作界面元素,有可视化开发工具自动生成相关应用软件,轻松跨越多个资源和层次连接所有数据。过去,数据可视化属于商业智能开发者类别,但是随着Hadoop的崛起,数据可视化已经成了一项的专业技能和岗位。
4 信息架构开发大数据重新激发了主数据管理的热潮。充分开发利用企业数据并支持决策需要非常专业的技能。信息架构师必须了解如何定义和存档关键元素,确保以最有效的方式进行数据管理和利用。信息架构师的关键技能包括主数据管理、业务知识和数据建模等。
5 数据仓库研究为方便企业决策,出于分析性报告和决策支持的目的而创建的数据仓库研究岗位是一种所有类型数据的战略集合。为企业提供业务智能服务,指导业务流程改进和监视时间、成本、质量和控制。
6 OLAP开发OLAP在线联机分析开发者,负责将数据从关系型或非关系型数据源中抽取出来建立模型,然后创建数据访问的用户界面,提供高性能的预定义查询功能。
7 数据科学研究数据科学家是一个全新的工种,能够将企业的数据和技术转化为企业的商业价值。随着数据学的进展,越来越多的实际工作将会直接针对数据进行,这将使人类认识数据,从而认识自然和行为。8 数据预测分析营销部门经常使用预测分析预测用户行为或锁定目标用户。预测分析开发者有些场景看上有有些类似数据科学家,即在企业历史数据的基础上通过假设来测试阈值并预测未来的表现。
8 数据预测分析营销部门经常使用预测分析预测用户行为或锁定目标用户。预测分析开发者有些场景看上有有些类似数据科学家,即在企业历史数据的基础上通过假设来测试阈值并预测未来的表现。
9 企业数据管理企业要提高数据质量必须考虑进行数据管理,并需要为此设立数据管家职位,这一职位的人员需要能够利用各种技术工具汇集企业周围的大量数据,并将数据清洗和规范化,将数据导入数据仓库中,成为一个可用的版本。
10 数据安全研究数据安全这一职位,主要负责企业内部大型服务器、存储、数据安全管理工作,并对网络、信息安全项目进行规划、设计和实施。

热心网友 时间:2022-04-09 19:19

随着大数据技术的不断发展和有效应用,不管是为国家还是企业以及是个人都创造了一定的价值,而且从大数据行业技术应用的总体来看,大数据在商业、金融、物流和零售等行业的应用已经都得到了很好的应用而且效果显著,在医疗、教育和体育等其它行业的应用也在逐渐的推进之中。
就目前的大数据技术人的培养来看,大数据技术人才在中国市场目前依然是比较紧缺,尤其是高端大数据人才,因此企业应对这样的情况也是开出了相对较高的待遇聘请大数据方面的高端人才。掌握当下最紧缺的大数据技能成为企业提升发展的关键,无论你精通大数据的哪一项类,都将会在未来职场脱颖而出!
当然,这也和你所在的城市市场需求有很大关系,一二线城市大数据发展起步早,行业的应用也更多更深,大数据人才的需求量就比较大,加上目前国内的大数据人才比较缺乏,薪资待遇在IT行业是很高的也正常。
所以,通过整体大数据行业来看的话,大数据的培训发展的前景还是比较好的,尤其是在一线城市大数据培训出来的人才的机会还是比较多的。

声明声明:本网页内容为用户发布,旨在传播知识,不代表本网认同其观点,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。E-MAIL:11247931@qq.com